DOI QR코드

DOI QR Code

Cloning of the β-Lactamase Gene from Bacillus sp. J105 and Analysis of Its Expression in E. colis Cells

Bacillus sp. J105 유래 β-lactamase 유전자의 cloning 및 E. coli 내에서의 발현 분석

  • Kang, Won-Dae (Department of Biotechnology, Dong-A University) ;
  • Lim, Hak-Seo (Department of Biotechnology, Dong-A University) ;
  • Seo, Min-Jeong (Department of Biotechnology, Dong-A University) ;
  • Kim, Min-Jeong (Department of Biotechnology, Dong-A University) ;
  • Lee, Hye-Hyeon (Department of Biotechnology, Dong-A University) ;
  • Cho, Kyeong-Soon (Public Health and Environment Institute of Busan) ;
  • Kang, Byoung-Won (BK21 Center for Silver-Bio industrialization Project, Dong-A University) ;
  • Seo, Kwon-Il (Department of Food and Nutrition, Sunchon National University) ;
  • Choi, Yung-Hyun (Department of Biochemistry, College of Oriental Medicine, Dong-eui University) ;
  • Jeong, Yong-Kee (Department of Biotechnology, Dong-A University)
  • 강원대 (동아대학교 생명공학과) ;
  • 임학섭 (동아대학교 생명공학과) ;
  • 서민정 (동아대학교 생명공학과) ;
  • 김민정 (동아대학교 생명공학과) ;
  • 이혜현 (동아대학교 생명공학과) ;
  • 조경순 (부산광역시 보건환경연구원) ;
  • 강병원 (동아대학교 BK21 실버바이오 사업단) ;
  • 서권일 (순천대학교 식품영양학과) ;
  • 최영현 (동의대학교 한의과대학 생화학교실) ;
  • 정영기 (동아대학교 생명공학과)
  • Published : 2008.11.30

Abstract

The $\beta$-lactamase gene was cloned into E. coli DH5$\alpha$ from Bacillus sp. J105 with strong resistance against $\beta$-lactam antibiotics. The chromosomal DNA was partially digested with Sau3AI and ligated to BamHI digested pLAFR3. $\beta$-Lactamase positive clones were obtained by using in vitro packaging kit. The pKL11-${\Delta}4.6$ with $\beta$-lactamase activity was obtained by subcloning of the recombinant plasmid ($\beta$-lac +). The 6.5 kb fragment in the subcloned plasmid was sequenced. The DNA fragment that contains the $\beta$-lactamase gene encodes 309 amino acids. The 0.17 kb upstream region was similar to those of B. thuringinesis and B. cereus with 97% identity. The deduced amino acids sequence was also similar to those of $\beta$-lactamase from B. thuringinesis and B. cereus with 97% and 94% identity, respectively. The phylogenetic tree also showed the relationships of the $\beta$-lactamase gene of Bacillus sp. J105 to genetically related that of other Bacillus strains. Analysis of expression pattern of the pKL11-${\Delta}4.6$ in E. coli, revealed that the secretion efficiency of $\beta$-lactamase was $4{\sim}5%$ and the molecular weight was as same as that of original $\beta$-lactamase (31 kDa) from Bacillus sp. J105.

$\beta$-Lactam계 항생물질에 강한 내성을 가지는 균주 Bacillus sp. J105가 생산하는 $\beta$-lactamase의 유전자를 E. coli DH5$\alpha$에 cloning하였다. Cosmid vector pLAFR3을 이용하여, Sau3AI 으로 부분 분해한 chromosomal DNA와 BamHI으로 처리한 pLAFR3을 ligation하였다. In vitro packaging kit를 사용하여 E. coli에 형질도입 하였으며 $\beta$-lactamase양성 clone주를 획득하였다. 이 recombinant plasmid ($\beta$-lac+)를 pACYC184 (4.2kb) vector를 사용하여 subcloning 하여 최종 $\beta$-lactamase의 활성이 있는 6.4 kb 단편이 포함된 pKL11${\Delta}4.6$을 제작하였다. 이 단편을 DNA 염기서열을 분석한 결과 309개의 아미노산으로 구성된 $\beta$-lactamase를 코딩하는 927 bp를 포함하고 있었다. 클로닝된 $\beta$-lactamase 유전자의 upstream을 포함하는 170 bp의 염기서열을 분석한 결과, B. thuringinesis와 B. cereus 유래의 $\beta$-lactamase 유전자의 upstream 부위와 97%의 일치를 보였다. 본 연구에서 클로닝된 $\beta$-lactamase의 아미노산을 서열을 NCBI BLAST program을 이용하여 분석해 본 결과 B. thuringinesis와 B. cereus의 $\beta$-lactamase와 각각 97%와 94%의 일치를 보였다. 또한 계통도 분석 결과 역시 본 연구에서 클로닝된 $\beta$-lactamase의 아미노산을 서열은 B. thuringinesis와 B. cereus 와 유전학적으로 아주 밀접한 관계를 보여주었다. 이 pKL11-${\Delta}4.6$를 E. coli에서 형질전환 시켜 발현 양상을 조사해 본 결과 $\beta$-lactamase의 secretion efficiency는 약 $4{\sim}5%$%였다. E. coli의 세포 내 단백질로부터 $\beta$-lactamase를 정제하여 분자량을 확인한 결과 31 kDa로 wild type의 분자량과 일치함을 확인하였다.

Keywords

References

  1. Beckwith, D. G. and J. A. Jahre. 1980. Role of cefoxtin-inducible beta-lactamase in case of breakthrough bacteria. J. Clin. Microbiol. 12, 517-520.
  2. Birnbiom, H. C. and J. Doly. 1979. Rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7, 1513-1523. https://doi.org/10.1093/nar/7.6.1513
  3. Chang, A. C. Y. and S. N. Cohen. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134, 1141-1156.
  4. Cho, K. S., B. W. Kang, M. J. Seo, Y. C. Lee, J. H. Lee, W. H. Joo, Y. H. Choi, H. S. LIm, J. I. Kim, K. I. Seo and Y. K. Jeong. 2008. Purification and characterization of $\beta$-lactamase secreted Bacillus sp. J105 strain having $\beta$-lactam antibiotic resistance. Kor. J. Life Sci. 18, 845-851. https://doi.org/10.5352/JLS.2008.18.6.845
  5. Cohen, S. and H. M. Sweeney. 1968. Constitutive penicillinase formation in Staphylococcus aureus owing to a mutation unliked to the penicillinase plasmid. J. Bacteriol. 95, 1368-1374.
  6. Cohen, S. N., A. C. Y. Chang and L. Hsu. 1972. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R factor DNA. Proc. Natl. Acad. Sci. 69, 2110-2114. https://doi.org/10.1073/pnas.69.8.2110
  7. Dyke, K. G. H. 1979. $\beta$-lactamase of Staphylococcus aureus in $\beta$-lactamase. pp. 219. Chamilton Miller, J. M. T., J. T. Smith (eds.), Academic Press Inc., London.
  8. Fleckenstein, J. M., D. J. Kopecko, R. L. Warren and E. A. Elsinghorst. 1996. Molecular characterization of the tia invasion locus from enterotoxigenic Escherichia coli. Infect Immun. 64, 2256-2265.
  9. Friedman, A. M., S. R. Long, S. E. Brown, W. J. Buikema and F. M. Ausubel. 1982. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene 18, 289-296. https://doi.org/10.1016/0378-1119(82)90167-6
  10. Fu, K. P. and H. C. Neu. 1981. The role of inducible $\beta$-lactamase in the antagonism seen with certain cephalosporin combinations. J. Antimicrob. Chemother. 7, 104-107. https://doi.org/10.1093/jac/7.1.104
  11. Hanaham, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
  12. Hennessey, T. D. 1967. Inducible $\beta$-lactamase in Enterobacter. J. Gen. Microbiol. 49, 277-285. https://doi.org/10.1099/00221287-49-2-277
  13. Imsande, J., J. W. Zyskind and I. Mile. 1972. Regulation of Staphylococcal penicillinase synthesis. J. Bacteriol. 109, 122-133.
  14. Lampe, M. F., B. J. Allan, B. H. Minshew and J. C. Sherris. 1982. Mutational enzymatic resistance of Enterobacter species to beta-lactam antibiotics. Antimicrob. Agents and Chemother. 21, 655-660. https://doi.org/10.1128/AAC.21.4.655
  15. Murray, M. G. and W. F. Thompson. 1980. Rapid isolation of high-molecular-weight plant DNA. Nucleic Acid Res. 8, 4321-4325. https://doi.org/10.1093/nar/8.19.4321
  16. Neu, H. C. and L. A. Heppel. 1965. The release of enzymes from E. coli by osmotic shock and during formation of spheroplasts. J. Biol. Chem. 240, 3685-3692.
  17. Nordstrom, K. and R. B. Sydes. 1974. Induction kinetics of $\beta$-lactamase biosynthesis in Pseudomonas aeruginosa. Antimicrob. Agents and Chemother. 6, 734-740. https://doi.org/10.1128/AAC.6.6.734
  18. Rosseiet, A. and W. Zimmermann. 1973. Mutants of Pseudomonas aeruginosa with impaired beta-lactamase inducibility and increased sensitivity to beta-lactam antibiotics. J. Gen. Microbiol. 7, 455-457.
  19. Sanders, M. G. and W. E. Sanders, Jr. 1979. Spelling of resistance to cefamandole: Possible role of cefoxitin-inducible bete-lactamases. Antimicrob. Agents and Chemother. 15, 792-797. https://doi.org/10.1128/AAC.15.6.792
  20. Sanger, F., S. Nicklen and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74, 5463-5467. https://doi.org/10.1073/pnas.74.12.5463
  21. Sawai, T., I. Takahashi and S. Yamagish. 1970. Iodometric assay method for beta-lactamase with various beta-lactam antibiotics as substrates. J. Bacteriol. 13, 910-913.
  22. Sloma, A. and M. Gross. 1983. Molecular cloning and nucleotide sequence of the type I $\beta$-lactamase gene from Bacillus cereus. Nucleic Acid Res. 11, 4997-5004. https://doi.org/10.1093/nar/11.14.4997
  23. Tang, G. O., R. P. Bandwar and S. S. Patel. 2005. Extended upstream A-T sequence increase T7 promoter strength. J. Biol. Chem. 280, 40707-40713. https://doi.org/10.1074/jbc.M508013200
  24. Wang, P. Z. and R. P. Novick. 1987. Nucleotide sequence and expression of the $\beta$-lactamase gene from Staphylococcus aureus plasmid p1 258 in Escherichia coli, Bacillus subtilis and Staphylococcus aureus. J. Bacteriol. 169, 1763-1766. https://doi.org/10.1128/jb.169.4.1763-1766.1987
  25. Wang, W., S. F. Mezes, Y. Q. Peter, W. Yang, B. Russell and J. O. Lampen. 1985. Cloning and sequencing of the $\beta$-lactamase I gene of Bacillus cereus 51B and its expression in Bacillus subtilis. J. Bacteriol. 163, 487-492.
  26. Yamaguchi, A. 1985. Difference in pathway of Escherichia coli outer membrane permeation between penicillins and cephalosporines. FEBS Lett. 181, 143-148. https://doi.org/10.1016/0014-5793(85)81130-3
  27. Yoshihara, E. 1988. In vitro demonstration by the rate assay of the presence of small pore in the outer membrane of Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 156, 470-476. https://doi.org/10.1016/S0006-291X(88)80865-9
  28. Zyskind, J. W. and J. Imiande. 1972. Regulation of penicillinase synthesis a mutation in Staphylococcus aureus unliked to the penicillinase plasmid that reduces penicillinase inducibility. J. Bacteriol. 109, 116-121.