DOI QR코드

DOI QR Code

3-D Surface Profile Measurement Using An Acousto-optic Tunable Filter Based Spectral Phase Shifting Technique

  • Kim, Dae-Suk (Division of Mechanical System Engineering, Chonbuk National University) ;
  • Cho, Yong-Jai (Division of Advanced Technology, Korea Research Institute of Standards and Science)
  • 투고 : 2008.09.30
  • 심사 : 2008.12.10
  • 발행 : 2008.12.31

초록

An acousto-optic tunable filter based 3-D micro surface profile measurement using an equally spaced 5 spectral phase shifting is described. The 5-bucket spectral phase shifting method is compared with a Fourier-transform method in the spectral domain. It can provide a fast measurement capability while maintaining high accuracy since it needs only 5 pieces of spectrally phase shifted imaging data and a simple calculation in comparison with the Fourier transform method that requires full wavelength scanning data and relatively complicated computation. The 3-D profile data of micro objects can be obtained in a few seconds with an accuracy of ${\sim}10nm$. The 3-D profile method also has an inherent benefit in terms of being speckle-free in measuring diffuse micro objects by employing an incoherent light source. Those simplicity and practical applicability is expected to have diverse applications in 3-D micro profilometry such as semiconductors and micro-biology.

키워드

참고문헌

  1. K. Creath, “Step height measurement using two wavelength phase shifting interferometry,” Appl. Opt., vol. 26, no. 14, pp. 2810-2816, 1993 https://doi.org/10.1364/AO.26.002810
  2. Hariharan P., Roeb. B and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt., vol. 26, no. 13, pp. 2504-2506, 1987 https://doi.org/10.1364/AO.26.002504
  3. D. Kim, J. W. You and S. Kim, “White light on-axis digital holographic microscopy based on spectral phase shifting,” Opt. Exp., vol. 14, no. 1, pp. 229-234, 2006 https://doi.org/10.1364/OPEX.14.000229
  4. H. J. Lee and S. K. Gil, “Error Analysis for Optical Security by means of 4-Step Phase-Shifting Digital Holography,” J. Opt. Soc. Korea, vol. 10, no. 3, pp. 118-123, 2006 https://doi.org/10.3807/JOSK.2006.10.3.118
  5. D. Kim, B. J. Baek, Y. D. Kim and B. Javidi, “3D nano object recognition based on phase measurement technique,” J. Opt. Soc. Korea, vol. 11, no. 3, pp. 108-112, 2007 https://doi.org/10.3807/JOSK.2007.11.3.108
  6. P. de Groot and L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white-light interferomgrams,” Opt. Lett., vol 18, no. 17, pp. 1462-1464, 1993 https://doi.org/10.1364/OL.18.001462
  7. Y. Ishii, J. Chen, and K. Murata, “Digital phase-measuring interferometry with a tunable laser diode,” Opt. Lett., vol. 12, no. 4, pp. 233-235, 1988 https://doi.org/10.1364/OL.12.000233
  8. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt., vol. 12, no. 9, pp. 2071-2074, 1973 https://doi.org/10.1364/AO.12.002071
  9. Y. Cheng and J. C. Wyant, “Two-wavelength phase shifting interferometry,” Appl. Opt., vol. 23, no. 24, pp. 4539-4543, 1984 https://doi.org/10.1364/AO.23.004539
  10. M. K. Kim, “Wavelength scanning digital interference holography for optical section imaging,” Opt. Lett., vol. 24, no. 23, pp. 1693-1695, 1999 https://doi.org/10.1364/OL.24.001693
  11. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without $2{\pi}$ ambiguity by multiwavelength digital holography,” Opt. Lett., vol. 28, no. 13, pp. 1141-1143, 2003 https://doi.org/10.1364/OL.28.001141
  12. S. Kuwamura and I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape profiling,” Appl. Opt., vol. 37, no. 19, pp. 4473-4482, 1997 https://doi.org/10.1364/AO.36.004473
  13. M. Takeda, and H. Yamamoto, “Fourier-transform speckle profilometry: three dimenstional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces,” Appl. Opt., vol. 33, no. 34, pp. 7829-7837, 1994 https://doi.org/10.1364/AO.33.007829
  14. M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, and T. Kurokawa, “Optical frequency-domain imaging microprofilometry with a frequency-tunable liquid-crystal Fabry-Perot etalon device,” Appl. Opt., vol. 38, no. 34, pp. 7063-7068, 1999 https://doi.org/10.1364/AO.38.007063
  15. D. Kim, S. Kim, H. Kong and Y. Lee, “Measurement of the thickness profile of a transparent thin film deposited upon a pattern structure with an acousto-optic tunable filter,” Opt. Lett., vol. 27, no. 21, pp. 1893-1895, 2002 https://doi.org/10.1364/OL.27.001893
  16. D. Kim and S. Kim, “Direct spectral phase function calculation for dispersive interferometric thickness profilometry,” Opt. Exp., vol. 12, no. 21, pp. 5117-5124, 2004 https://doi.org/10.1364/OPEX.12.005117
  17. M. Takeda, Hideki Ina and Seiji Kobayashi, “Fouriertransform method of fringe-pattern analysis for computerbased topography and interferometry,” J. Opt. Soc. Am., vol. 72, no. 1, pp. 156 -160, 1982 https://doi.org/10.1364/JOSA.72.000156
  18. J. Schwider and L. Zhou, “Dispersive interferometric profilometer,” Opt. Lett., vol. 19, no. 13, pp. 995-997, 1994 https://doi.org/10.1364/OL.19.000995
  19. K. Osak Y, “Multi channel phase shifted interferometry,” Opt. Lett., vol. 9, no. 2, pp. 59-61, 1984 https://doi.org/10.1364/OL.9.000059
  20. L. Deck and P. de Groot, “Punctuated quadrature phase-shifting interferometry,” Opt. Lett., vol. 23, no. 1, pp. 19-21, 1998 https://doi.org/10.1364/OL.23.000019
  21. P. Sandoz, J. Calatroni and G. Ttribillon, “Potential of a wavelength sampling approach for profilometry by phase shifting interferometry,” J. of Mod. Opt., vol. 46, no. 2, pp. 327-339, 1999 https://doi.org/10.1080/09500349908231274

피인용 문헌

  1. Accuracy Assessment for Measuring Surface Figures of Large Aspheric Mirrors vol.13, pp.2, 2009, https://doi.org/10.3807/JOSK.2009.13.2.178
  2. Phase error analysis of incoherent triangular holography vol.48, pp.34, 2009, https://doi.org/10.1364/AO.48.00H231
  3. Ultra High-speed 3-dimensional Profilometry Using a Laser Grating Projection System vol.13, pp.4, 2009, https://doi.org/10.3807/JOSK.2009.13.4.464
  4. Surface Form Measurement Using Single Shot Off-axis Fizeau Interferometry vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.409
  5. A High-speed Digital Laser Grating Projection System for the Measurement of 3-dimensional Shapes vol.13, pp.2, 2009, https://doi.org/10.3807/JOSK.2009.13.2.251
  6. Noise-robust Phase Gradient Retrieval Formulation for Phase-shifting Interferometry vol.14, pp.2, 2010, https://doi.org/10.3807/JOSK.2010.14.2.131
  7. Double common-path interferometer for flexible optical probe of optical coherence tomography vol.20, pp.2, 2012, https://doi.org/10.1364/OE.20.001102
  8. Review of surface profile measurement techniques based on optical interferometry vol.93, 2017, https://doi.org/10.1016/j.optlaseng.2017.02.004
  9. Measurement of a Mirror Surface Topography Using 2-frame Phase-shifting Digital Interferometry vol.13, pp.2, 2009, https://doi.org/10.3807/JOSK.2009.13.2.245
  10. QPSK Modulation Based Optical Image Cryptosystem Using Phase-shifting Digital Holography vol.14, pp.2, 2010, https://doi.org/10.3807/JOSK.2010.14.2.097
  11. Profilometry without phase unwrapping using multi-frequency and four-step phase-shift sinusoidal fringe projection vol.17, pp.10, 2009, https://doi.org/10.1364/OE.17.007818
  12. Asymmetric polarization-based frequency scanning interferometer vol.23, pp.6, 2015, https://doi.org/10.1364/OE.23.007333
  13. Correction of phase-shifting error in wavelength scanning digital holographic microscopy vol.29, pp.5, 2018, https://doi.org/10.1088/1361-6501/aaa8c1