DOI QR코드

DOI QR Code

카본블랙을 이용한 인체감전용 전도성 도료의 개발

Development of Electroconductive Paints for Electric-Shock on Human Body Using Carbon Black

  • 강계명 (서울산업대 신소재공학과)
  • Kang, Kae-Myung (Dept. of Mater. Sci. and Engineering., Seoul National University of Technology)
  • 발행 : 2008.12.27

초록

For development of a human body model for electric shock, electroconductive paints with carbon black as a filler material were developed. The characteristics of the volume resistivities of thin films fabricated using the electroconductive paints were investigated as a function of the particle sizes and content of carbon black. With a carbon black particle size over $80\;{\mu}m$, agglomeration of carbon black powders was observed. The volume resistivity of the particles increased as the porosity increased and as the amount of carbon black decreased due to the agglomeration of carbon black powders. With a particle size of $4\;{\mu}m$ and $20\;{\mu}m$, agglomeration of carbon black powders was not observed and their porosities were measured as 0.86% and 1.12% with volume resistivities of $20\;{\Omega}{\cdot}cm$ and $80\;{\Omega}{\cdot}cm$ respectively. A carbon black particle size of less than $20\;{\mu}m$ is considered to be suitable as a type of electric-shock electroconductive paint for a human body model.

키워드

참고문헌

  1. International Electrotechnical Commission, Effects of current on human beings and livestock - Part 2: Special aspects, IEC-60479, (1987)
  2. Institute of Electrical and Electronics Engineers, IEEE Standards Interpretation for IEEE Std 80-1986, (1986)
  3. M. S. Hammam and R. S. Baishiki, IEEE Trans. on Power Apparatus & Systems, PAS-102, (1983)
  4. C. F. Dalziel and F. P. Massoglia, AIEE Trans., 75, 49, (1956)
  5. P. Maxa, Theory of Box Girders. Chichester, Wiley, New York, USA, (1979)
  6. M. Song, Polym. Sci. Tech., 12, 689, (2001)
  7. Y. Nomura, Plastics, 47, 40, (1996)
  8. S. H. Foulger, J. Appl. Polym. Sci., 72, 1573, (1999) https://doi.org/10.1002/(SICI)1097-4628(19990620)72:12<1573::AID-APP10>3.0.CO;2-6
  9. Y. Sabba and E. L. Thomas, Macromolecules, 37, 4825 (2004)
  10. J. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. RodriguezMacias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Science, 280(22), 1253 (1998) https://doi.org/10.1126/science.280.5367.1253
  11. V. Krstic, G. S. Duesberg, J. Muster, M. Burghard and S. Roth, Chem. Mater., 10, 2338 (1998) https://doi.org/10.1021/cm980207f
  12. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund and R. C. Haddon, Science, 282(2), 95 (1998) https://doi.org/10.1126/science.282.5386.95
  13. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung and C. M. Lieber, Nature, 394(2), 52 (1998) https://doi.org/10.1038/27873
  14. J. E. Riggs, Z. Guo, D. L. Carroll and Y. P. J. Sun, J. Am. Chem. Soc., 122(24), 5879 (2000) https://doi.org/10.1021/ja9942282
  15. J. E. Riggs, D. B. Wakker, D. L. Carroll and Y. P. J. Sun, J. Phys. Chem. B., 104, 7071 (2000) https://doi.org/10.1021/jp0011591
  16. J. S. Lim, S. M. Park, S. Y. Lee, I. P. Hong and M. S. Kim, RIST, 19(3), 225 (2005)
  17. S. Yoon, J. K. Lee, W. Cho, Y. Back, J. B. Ju and B. W. Cho, J. Kor. Electrochem.. Soc. 6(1), 6 (2003) https://doi.org/10.5229/JKES.2003.6.1.006