DOI QR코드

DOI QR Code

Cytotoxic Effect of Isolated Protein-bound Polysaccharides from Hypsizigus marmoreus Extracts by Response Surface Methodology

반응표면분석에 의한 해송이버섯(Hypsizigus marmoreus) 추출물 중 단백다당체의 암세포 성장억제효과

  • Published : 2008.12.31

Abstract

This study used response surface methodology (RSM) in an effort to optimize the water extraction conditions of Hypsizigus marmoreus in order to increase cytotoxicity activity of the extract. A central composite design was applied to investigate the effects of independent variables, which included the extraction temperature ($X_1$), extraction time ($X_2$), the ratio of solvent to sample ($X_3$) on dependent variables of the extracts, including extraction yield ($Y_1$) and protein content ($Y_2$). The estimated optimal conditions were as follows: $51.3^{\circ}C$ extraction temperature, 8.2 hrs extraction time, and 46.7 mL/g of solvent per sample. The extract (CE) was extracted at optimal condition and crude polysaccharides (CPS) were obtained from CE by ethanol precipitation, dialysis, and freeze drying. Neutral (NPS) and acidic (APS) fraction of polysaccharides were seperated from CPS by ion chromatography. The growth inhibitory effects of the APS (0.5 mg/mL) on AGS human cancer cells were 73.97%. CPS showed the highest growth inhibitory effects on HepG2 human cancer cell at 0.5 mg/mL. However all fraction polysaccharides from Hypsizigus marmoreus showed lower than 20% growth inhibition on SW480 human cancer cell.

해송이버섯 분말의 암세포성장억제효과의 증진을 위한 성분의 추출조건을 최적화하기 위하여 반응표면분석법을 사용하였다. 중심합성계획에 따라 추출조건의 독립변수(추출온도, 추출시간, 용매비)와 이에 따라 영향을 받는 수율과 추출물의 단백질 함량을 종속변수로 설정하였다. 수율과 단백질 함량이 높은 조건을 충족시키는 최적조건은 추출온도 $51.3^{\circ}C$, 추출시간 8.2시간, 그리고 추출용매비는 46.7 mL/g 으로 나타났다. 최적조건에서 추출되어진 조추출물을 이용하여 알코올을 이용하여 침전한 후 dialysis tube를 이용하여 저분자물질을 제거하여 조다당체를 얻었으며 조다당체를 이용하여 이온교환수지를 이용하여 산성다당체와 중성다당 체를 얻어 각각의 다당체의 암세포성장억제효과를 알아보았다. 위암세포주 AGS에는 산성다당체가 0.5 mg/mL의 농도에서 73.97%로 가장 높은 세포증식억제효과를 보였으며 간암세포주 HepG2에는 조다당체가 0.5 mg/mL의 농도에서 82.45%로 가장 높은 효과를 보였다. 그러나 결장암세포주 SW480에서는 모든 분획의 시료가 20%미만의 세포성장 억제효과를 보였다.

Keywords

References

  1. Park HS, Min KJ, Cha CG, Song JW, Son JC. 2007. Antimicrobial activities against oral microbes and growth-inhibitory effect on oral tumor cell by extract of Paeonia lactiflor. Korean J Environ Health 33: 21-29 https://doi.org/10.5668/JEHS.2007.33.1.021
  2. Jo MJ, Min KJ. 2007. Antimicrobial activities against oral microbes and growth-inhibitory effect on oral tumor cell of extract of Perilla and Mugwort. Korean J Environ Health 33: 115-122 https://doi.org/10.5668/JEHS.2007.33.1.021
  3. Song JH, Lee HS, Hwang JK, Chung TY. 2003. Physiological activities of Phelliuns ribis extracts. Korean J Food Sci Technol 35: 690-695
  4. Misuno T. 1990. Antitumor activity and some properties of water soluble polysaccharides from fruiting body of Agaricus blasei Murill. Agric Biol Chem 54: 2889-2896 https://doi.org/10.1271/bbb1961.54.2889
  5. Hirokazu K, Ryuichi I, Teturo K, Takashi M. 1989. Fractionation and antitumor activity of the water-in-soluble residue of Agaricus blasei fruiting bodies. Carbohydr Res 186: 267-273 https://doi.org/10.1016/0008-6215(89)84040-6
  6. Sasaki T, Takasuka N. 1976. Further studies of the structure of lentinan, an antitumor polysaccharides form Lentinus edodes. Carbohydr Res 47: 99-106 https://doi.org/10.1016/S0008-6215(00)83552-1
  7. Komatsu N, Okubo S, Kikumoto S, Kimura K, Saito G, Sasaki S. 1969. Host mediated antitumor action of Schizophyllum commune. Gann Jpn J Cancer Res 60: 557-563
  8. Tsugagoshi S, Ohash F. 1974. Protein-bound polysaccharides preparation, PS-K, effective against sarcoma 180 and rat asites hepatoma AH-13 by oral use. Gann Jpn J Cancer Res 65: 557-565
  9. Mizuno T, Unagaki R, Kanto T, Hagiwara T, Nakamura T, Ito H, Shimura K, Sumiya T, Asakura A. 1990. Antitumor activity and some properties of water-insoluble polysaccharides from Himematsutake, the fruiting body of Agaricus blasei Murill. Agric Biol Chem 54: 2897-2905 https://doi.org/10.1271/bbb1961.54.2897
  10. Maziero R, Bononi VL. 1995. Science and cultivation of edible fungi. Balkema, Rotterdam, Netherlands. p 887-892
  11. Lee YL, Yen MT, Mau JL. 2007. Antioxidant properties of various extracts from Hypsizigus marmoreus. Food Chem 104: 1-9 https://doi.org/10.1016/j.foodchem.2006.10.063
  12. Stamets P. 1993. Growing gourmet and medicinal mushrooms. Ten Speed Press, Berkeley, CA
  13. Xu ML, Choi JY, Jeong BS, Li G, Lee KR, Lee CS, Woo MH, Lee ES, Jahng YD, Chang HW, Lee SH, Son JK. 2007. Cytotoxic constituents isolated from the fruit bodies of Hypsizigus marmoreus. Arch Pharm Res 30: 28-23 https://doi.org/10.1007/BF02977775
  14. Matsuzawa T, Sano M, Tomita I, Saitoh H, Ohkawa M, Ikekawa T. 1998. Studies on antioxidants of Hypsizigus marmoreus. II. Effects of Hypsizigus marmoreus for antioxidants activities of tumor-bearing mice. Yakugaku Zasshi 118: 467-481
  15. Ikekawa T, Saitoh H, Feng W, Zhang H, Li L, Matsuzawa T. 1992. Antitumor activity of Hypsizigus marmoreus. I Antitumor activity of extracts and polysaccharides. Chem Pharm Bull 40: 1954-1957 https://doi.org/10.1248/cpb.40.1954
  16. Lam SK, Ng TB. 2001. Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochem Biophys Res Comm 285: 1071-1075 https://doi.org/10.1006/bbrc.2001.5279
  17. Xu XM, Jun JY, Jeoung IH. 2007. A study on the antioxidant activity of Hae-Songi mushroom (Hypsizigus marmoreus) hot water extracts. J Korean Soc Food Sci Nutr 36: 1351-1357 https://doi.org/10.3746/jkfn.2007.36.11.1351
  18. Gontard N, Guilbert S, Cuq JL. 1992. Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J Food Sci 57: 190-196 https://doi.org/10.1111/j.1365-2621.1992.tb05453.x
  19. Lee GD, Lee JE, Kwon JH. 2000. Application of response surface methodology in food industry. Food Ind 33: 33-45
  20. Saha SK, Brewer CF. 1994. Determination of the concen-concentrations of oligosaccharides, complex type carbohydrates, and glycoproteins using the phenol-sulfuric acid method. Carbohydr Res 254: 157-167 https://doi.org/10.1016/0008-6215(94)84249-3
  21. Lowry OH, Rosebrough NJ, Farr Al, Randall RJ. 1954. Protein measurement with the Folin phenol reagents. J Biol Chem 193: 265-275
  22. Green LM, Reade JL, Ware CF. 1984. Rapid colometric assay for cell viability: Application to the quantitation of cytotoxic and growth inhibitory lymphokines. J Immunol Methods 70: 257 https://doi.org/10.1016/0022-1759(84)90190-X
  23. Choi KH. 2008. Extraction and purification of polysaccharides from Phellinus linteus mycelia. Korean Chem Eng Res 46: 430-435
  24. Park KM, Lee BW. 1998. Extraction and purification of antitumor protein-bound polysaccharides from mycelia of Lentinus edodes. Korean J Food Sci Technol 30: 1236-1242
  25. Cho SM, Lee JH, Han SB, Kim HM. 1995. Immuno-stimulating polysaccharides from the fruiting bodies of Formitella fraxinea (II). Korean J Mycol 23: 340-347
  26. Park KS, Lee JY, Lee SJ, Kim SH, Lee JS. 1992. Extraction and separation of protein-bound polysaccharide produced by Coriolus versicolor (Fr) Quel. Korean J Mycol 20: 72-76
  27. Choi JW, Ryu DY, Kim YK, Hong EG, Kwun MS, Han JS. 2000. Extraction and purification of bioactive materials from Agaricus blazei fruiting bodies. Korean J Biotechnol Bioeng 15: 293-298
  28. Chun HS, Choi EH, Kim HJ, Choi CW, Hwang SJ. 2001. In vitro and in vivo antitumor activities of water extracts from Agaricus blasei Murill. Food Sci Biotechnol 10: 335-340

Cited by

  1. Screen of Functional Activity of Polysaccharide and Glycosaminoglycan from Sea Hare (Aplysia kurodai) by Cell Line vol.40, pp.1, 2011, https://doi.org/10.3746/jkfn.2011.40.1.014
  2. Antioxidant Activity of Hwangki and Beni-Koji Extracts and Mixture vol.40, pp.1, 2011, https://doi.org/10.3746/jkfn.2011.40.1.001
  3. Anti-obesity Effect of Hypsizigus marmoreus in High Fat-fed Mice vol.40, pp.12, 2011, https://doi.org/10.3746/jkfn.2011.40.12.1708