DOI QR코드

DOI QR Code

Effect of Green Tea Products on Bone Metabolism Marker in Ovariectomized Rats with High Cholesterol Diet Intake

고콜레스테롤 식이를 섭취한 난소절제 흰쥐에서 녹차가공품이 골 대사 지표에 미치는 효과

  • Noh, Kyung-Hee (BK21 Center of Smart Foods and Drugs, Food Science Institute, and Biohealth Product Research Center, Inje University) ;
  • Jang, Ji-Hyun (BK21 Center of Smart Foods and Drugs, Food Science Institute, and Biohealth Product Research Center, Inje University) ;
  • Cho, Mi-Kyung (BK21 Center of Smart Foods and Drugs, Food Science Institute, and Biohealth Product Research Center, Inje University) ;
  • Song, Young-Sun (BK21 Center of Smart Foods and Drugs, Food Science Institute, and Biohealth Product Research Center, Inje University)
  • 노경희 (인제대학교 BK21 식의약생명공학과, 식품과학연구소 및 바이오헬스 소재 연구센터) ;
  • 장지현 (인제대학교 BK21 식의약생명공학과, 식품과학연구소 및 바이오헬스 소재 연구센터) ;
  • 조미경 (인제대학교 BK21 식의약생명공학과, 식품과학연구소 및 바이오헬스 소재 연구센터) ;
  • 송영선 (인제대학교 BK21 식의약생명공학과, 식품과학연구소 및 바이오헬스 소재 연구센터)
  • Published : 2008.12.31

Abstract

This study was designed to evaluate the effect of green tea products (GTP) on bone metabolism marker in ovariectomized (OVX) rats fed high cholesterol diet. Forty Sprague-Dawley female rats, 10 weeks of age ($279{\pm}2g$), were divided into 4 groups and fed on the experimental diets for 6 weeks: sham operated control (Sham-C) and OVX-control (OVX-C) groups treated high cholesterol diet. OVX-GTP 5% (OVX-G5) and OVX-GTP 20% (OVX-G20) groups were treated with high cholesterol diet containing 5% GTP and 20% GTP, respectively. Food efficient ratio was significantly (p<0.05) lower in OVX-G20 than in the other OVX groups. Bone mineral density of femur was not significantly different among the experimental groups in the order of Sham-C>OVX-G5 and OVX-G20>OVX-C. Alkaline phosphatase activities on serum was lower in the GTP supplement groups than in the OVX-C. Estradiol levels of serum were higher in the GTP supplement groups than in the OVX-C. Osteocalcin levels of serum was the lowest in the OVX-G20. Deoxypyridinoline crosslink values of urine, indicator of bone absorption, was the lowest in the OVX-G20 group. The GTP supplemented groups had a lower bone resorption ratio than in the OVX-C group. From the above results, these findings suggest the possibility of using GTP as a functional food materials related to bone metabolism in menopause.

본 연구는 폐경 후 녹차잎 함유 건강기능성 제품으로 녹차가루(15%)와 녹차잎 추출물(35%), 두충추출물(15%), 감잎추출물(15%), 검정콩 가루(18%) 및 찹쌀 풀과 꿀(2%) 등을 배합하여 조제된 녹차가공품(이하 GTP)이 고콜레스테롤 식이를 섭취시킨 난소절제 흰쥐의 골 대사에 미치는 효과를 알아보았다. 실험동물은 10주령의 Sprague-Dewley 암컷 흰쥐(평균 체중 $279{\pm}2g$)로 완전임의배치로 한 군당 10마리씩 4군으로 나누어 사육하였으며 양쪽 난소를 절제(ovariectomy: OVX)하였다. Sham 대조군은 실험군과 동일한 스트레스를 주기 위해 난소를 절제하지 않고 개복수술만 실시한 후 2주간 배합사료를 급여한 후 Sham-대조군(Sham-C)과 OVX-대조군(OVX-C)은 AIN' 76에 기초해서 제조한 콜레스테롤 첨가 식이를, OVX 실험군은 콜레스테롤 첨가 식이에 GTP 5%(OVX-G5)와 20%(OVX-G20)를 함유한 실험 식이를 조제하여 6주간 급여하였다. 식이 조제 시 Ca 함량은 총 식이의 0.4% 수준으로 조정하였으며 Sham-C, OVX-C와 OVX-G5는 $CaCO_3$를 첨가하여 조정하였고 OVX-G20은 Ca 함량이 0.4%였으므로 별도의 $CaCO_3$를 첨가하지 않았다. OVX군에서의 식이효율은 OVX-G5가 유의적으로 낮았으며 Sham-C과 유사한 수준을 보였다. 대퇴골의 골밀도는 각 군 간에 유의적인 차이는 없었으나 Sham-C> OVX-G5와 OVX-G20> OVX-대조군의 순으로 나타났다. 골격 형성의 생화학적 지표인 alkaline phosphatase 활성은 OVX군 간에 유의적인 차이는 나타내지 않았으나 GTP를 첨가한 식이를 섭취한 군에서는 다소 감소되는 경향을 보였다. Estradiol의 농도는 각 군 간의 유의적인 차이를 보이지 않았으나 Sham-C> OVX-G20> OVX-G5> OVX-C의 순으로 나타나 GTP 20%를 첨가한 군과 Sham-C가 유사한 수준을 보였다. Osteocalcin 농도는 OVX-C에 비해 GTP를 첨가한 군에서 유의적으로 감소하였으며 GTP의 첨가량이 많을수록 혈청 osteocalcin 수준이 감소하였고 OVX-G20에서는 Sham-C와 유사한 수준으로 나타났다. 본 연구의 결과는 ALP 활성이 증가될수록 osteocalcin의 농도도 증가되는 경향을 보였다. DPD crosslink value는 OVX-G20이 OVX-C 에 비해 유의적으로 낮은 수준이었다. 폐경기에 ALP 활성과 osteocalcin의 농도가 높은 것은 골 교체율이 빠른 것을 나타내므로 난소절제 흰쥐에서 GTP가 골 교체율을 감소시켜 골흡수를 억제함으로써 골 보호 효과를 나타내는 것으로 사료된다. 그러나 GTP 5%와 20%의 첨가량에 따른 차이는 보이지 않았다. 이상의 결과들로 미루어 볼 때 난소절제 흰쥐모델의 골 대사 지표에 다소 유리하게 영향을 미치는 것으로 나타나 녹차가공품이 골다공증 예방을 위한 기능성식품으 로서의 가능성을 보여주었으며, 골다공증 예방을 위한 녹차 가공품의 효과적인 섭취량은 계속적으로 연구가 진행되어야 할 것으로 사료된다.

Keywords

References

  1. Lee JW, Kim HJ, Jhee OH, Won HD, Yu YJ, Lee MH, Kim TW, Om AS, Kang JS. 2005. Effects of alternative medicine extract on bone mineral density, bone strength and biochemical markers of bone metabolism in ovariectomized rats. Korean J Food Nutr 18: 72-80
  2. Lee YB, Lee HJ, Kim KS, Lee JY, Nam SY, Cheon SH, Sohn HS. 2004. Evaluation of the preventive effect of isoflavone extract on bone loss in ovariectomized rats. Biosci Biotechnol Biochem 68: 1040-1045 https://doi.org/10.1271/bbb.68.1040
  3. Byun JS, Rho SN, Park JS, Park HM. 2005. Effect of isoflavone supplementation on bone metabolism in ovariectomized rats at different ages. J Korean Soc Food Sci Nutr 34: 1350-1356 https://doi.org/10.3746/jkfn.2005.34.9.1350
  4. The Korean Society of Bone Metabolism. 1997. Osteoporosis. Seoul, Korea
  5. Grodstein E, Stamfer MJ, Colditz GA, Willet WC, Manson JE, Joffe M, Rosner B, Fuchs C, Hankinson SE, Hunter DJ, Hennekens CH, Speizer FE. 1997. Postmenopausal hormone therapy and mortality. New Engl J Med 336: 569-573
  6. Lee DH, Sung CJ. 2003. Effect of soy isoflavone supplementation on bone metabolism marker and urinary mineral excretion in postmenopausal women. Korean J Food Nutr 36: 476-482
  7. Brown JP, Delmas PD, Malaval L, Edouard C, Cahpuy MC, Meunier PJ. 1984. Serum bone-gla protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet 1: 1091-1093 https://doi.org/10.1016/S0140-6736(84)92506-6
  8. Liu G, Peacock M. 1998. Age-related changes in serum undercarboxylated osteocalcin and its relationships with bone density, bone quality, and hip fracture. Calcif Tissue Int 62: 286-289 https://doi.org/10.1007/s002239900432
  9. Telci A, Catatay U, Kurt BB, Kayali R, Sivas A, Akcay T, Gokyigit A. 2000. Changes in bone turnover and deoxypyridinoline levels in epileptic patients. Clin Chem Lab Med 38: 47-50 https://doi.org/10.1515/CCLM.2000.008
  10. Sirtori P, Sosio C, Polo RM, Tenni R, Rubinacci A. 1997. A comparative study on biochemical markers of collagen breakdown in postmenopausal women. Pharmacol Res 36: 229-235 https://doi.org/10.1006/phrs.1997.0220
  11. Kim MJ, Choi JH, Yang JA, Kim SY, Kim JH, Lee JH, Kim JK, Rhee SJ. 2002. Effects of green tea catechin on enzyme activities and gene expression of antioxidative system in rat liver exposed to microwaves. Nutr Res 22: 733-744 https://doi.org/10.1016/S0271-5317(02)00365-2
  12. Rhee SJ, Kwag OG, Kim SO. 1998. Effect of catechin on the microsomal mixed function oxidase system and lipid peroxidation of lung in diabetic rats. Kor J Gerontol 8: 49-55
  13. Kim MJ, Choi JH, Yang JA, Kim SY, Kim JH, Lee JH, Kim JK, Rhee SJ. 2002. Effects of green tea catechin on enzyme activities and gene expression of antioxidative system in rat liver exposed to microwaves. Nutr Res 22: 733-744 https://doi.org/10.1016/S0271-5317(02)00365-2
  14. Sartippour MR, Heber D, Ma J, Lu Q, Go VL, Nguyen M. 2001. Green tea and its catechins inhibit breast cancer xenografts. Nutr Cancer 40: 149-156 https://doi.org/10.1207/S15327914NC402_11
  15. Sin MK, Han SH, Han GJ. 1997. The effect of green tea on the serum lipid and liver tissue of cholesterol fed rats. Korean J Food Sci Technol 29: 1255-1263
  16. Lee JW, Shin HS. 1993. Antioxidant effect of aqueous extract obtained from green tea. Korean J Food Sci Technol 25: 759-763
  17. Won HR. 2005. The effect of hot water soluble extract from green tea on metabolism of calcium and bone strength in rats fed soy protein diet. Korean J Community Living Science 16: 59-64
  18. Oh HS, Kim HC, Lee SI, Ahn DK. 1995. Effect of Eucommiae cortex and folium on the ovariectomized rat as the model of postmenopaual osteoporosis. J Herbology 10: 59-68
  19. Cho MK, Noh KH, Kim JJ, Song YS. 2007. Anti-atherogenic effect of green tea product through hypolipidemic and anti-oxidative action in ovariectomized rats. J Korean Soc Food Sci Nutr 36: 1263-1270 https://doi.org/10.3746/jkfn.2007.36.10.1263
  20. Diersen-Schade DA, Richard MJ, Norman LJ. 1984. Effect of dietary calcium and fat on cholesterol in tissues and faces of young goats. J Nutr 114: 2292-2300 https://doi.org/10.1093/jn/114.12.2292
  21. Zittermann A, Scheld K, Ganz A, Stehile P. 1999. Wheat ran supplementation does not affect biochemical markers of bone turnover in young adult women with recommended calcium intake. Br J Nutr 82: 431-435
  22. Chen Z, Stini W, Marshall JR, Martinez ME, Guillen-Rodriguez JM, Roe D, Alberts DS. 2004. Wheat bran fiber supplementation and bone loss among older people. Nutrition 20: 747-751 https://doi.org/10.1016/j.nut.2004.05.015
  23. Wong KH, Katsumata SI, Masuyama R, Uehara M, Suzuki K, Cheung P. 2006. Dietary fibers from mushroom sclerotia. 4. in vivo mineral absorption using ovariectomized rat model. J Agric Food Chem 54: 1921-1927 https://doi.org/10.1021/jf052619w
  24. Liao F, Andalibi A, deBeer FC, Fogelman AM, Lusis AJ. 1993. Genetic control of inflammatory gene induction and NF-${\kappa}B$-like transcription factor activation in response to an atherogenic diet in mice. J Clin Invest 91: 2572-2579 https://doi.org/10.1172/JCI116495
  25. Zeni S, Gornez-Acotto C, Di Gregorio S, Mautalen C. 2000. Differences in bone turnover and skeletal response to thyroid hormone treatment between estrogen-depleted rats. Calcif Tissue Int 67: 173-177 https://doi.org/10.1007/s00223001106
  26. Erickson GF. 1996. The ovary: basic principles and concepts. In Endocrinology and Metabolism. 3rd ed. Felig P, Baxer JD, Frohman LA, eds. McGrawHill Inc, New York, USA. p 973-1015
  27. Knott L, Bailey AJ. 1998. Collagen crosslinks in mineralizing tissues: A review of their chemistry, function, and clinical relevance. Bone 22: 181-187 https://doi.org/10.1016/S8756-3282(97)00279-2
  28. Longlands MG, Wiener K. 1978. Anomalous behavior of control sera in automated versions of the Kind and King alkaline phophatase method. Ann Clin Biochem 15: 164-167 https://doi.org/10.1177/000456327801500136
  29. Chasson AL, Grady HT, Stanley MA. 1961. Determination of creatinine by means of automatic chemicals analysis. Am J Clin Pathol 35: 83-89 https://doi.org/10.1093/ajcp/35.1_ts.83
  30. Bray DL, Briggs CM. 1984. Decrease in bone density in young male guinea pigs fed high levels of ascorbic acid. J Nutr 114: 920-928 https://doi.org/10.1093/jn/114.5.920
  31. Choi SJ, Kim MK. 2003. Effect of grape intake on cadmium metabolism of rats during aging. Korean J Nutr 36: 997-1012
  32. Frolik CA, Bryant HU, Black EC, Magee DE, Chandrasekhar S. 1996. Time-dependent changes in biochemical bone markers and serum cholesterol in ovariectomized rats: Effects of raloxifene HCl, tamoxifen, estrogen and alendronate. Bone 18: 621-627 https://doi.org/10.1016/8756-3282(96)00085-3
  33. Kalu DN, Arjmandi BH, Liu CC, Salih MA, Bimbaum RS. 1994. Effects of ovariectomy and estrogen on the serum levels of insulin-like growth factor-1 and insulin-like growth factor binding protein-3. Bone Miner 25: 135-148 https://doi.org/10.1016/S0169-6009(08)80255-3
  34. Lee YB, Lee HJ, Kim KS, Lee JY, Nam SY, Cheon SH, Shon HS. 2004. Evaluation of the preventive effect of isoflavone extract on bone loss in ovariectomized rats. Biosci Biotechnol Biochem 68: 1040-1045 https://doi.org/10.1271/bbb.68.1040
  35. Okasaki R, Inoue D, Shibata M, Saika M, Kido S, Ooka H, Tomiyama H, Sakamoto Y, Matsumoto T. 2002. Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) ${\alpha}$ or ${\bata}$. Endocrinology 143: 2349-2356 https://doi.org/10.1210/en.143.6.2349
  36. O JH, Lee YS. 1993. Effects of dietary calcium levels on the reduction of calcium availability in ovariectomized osteoporosis model rats. Korean J Nutr 26: 277-285
  37. Lee SH, Lee YS. 1998. Effects of late-harvested green tea extract on lipid metabolism and Ca absorption in rats. Korean J Nutr 31: 999-1005
  38. Notelovitz M. 1993. Osteoporosis: screening, prevention and management. Fertility Sterility 59: 714-715
  39. Price PA, Pathermore JG, Doftos LJ. 1980. New biochemical marker for bone metabolism. J Clin Invest 66: 878-883 https://doi.org/10.1172/JCI109954
  40. Choi MJ, Yu TS. 2004. Effects of red-yeast-rice supplementation on bone mineral density and bone mineral content in ovariectomized rats. Korean J Nutr 37: 423-430
  41. Seo HJ, Moon KD, Jeon SM, Kim JH, Choi MS. 2003. Supplementation of safflower seed powder and extracts enhances bone metabolism in rib-fractured rats. Nutraceuticals & Food 8: 46-53 https://doi.org/10.3746/jfn.2003.8.1.046
  42. Nordin BEC, Wishart JM, Clifton PM, MaArthur R, Scopacasa F, Need AG, Morris HA, O'Loughlin PD, Horowitz M. 2004. A longitudinal study of bone-related biochemical changes at the menopause. Clin Endocrinol 61: 123-130 https://doi.org/10.1111/j.1365-2265.2004.02066.x
  43. Lim SK. 1994. Clinical significance and application of bone turnover marker. Korean J Bone Metabolism 1: 1-11
  44. Lee JA, Noh SH, Ahn DK, Choi HY. 2001. Effects of the Eucommiae cotrtex and Chanenomelis fructus on the aged ovariectomized rat of postmenopausal osteoporosis. Kor J Herbology 16: 201-206
  45. Moon SJ, Kim JH, Lim SK. 1996. Investigation of risk of low serum 25-hydroxyvitamin D levels in Korean menopausal women. Korean J Nutr 29: 981-990
  46. Aloia JF, Cohr SH, Vaswani A, Yeh JK, Yuen K, Ellis K. 1985. Risk factors for postmenopausal osteoporosis. Am J Med 78: 95-100 https://doi.org/10.1016/0002-9343(85)90468-1
  47. Sarioglu M, Tuzun C, Unlu Z, Tikiz C, Taneli F, Uyanik BS. 2006. Comparison of the effects of alendronate and risedronate on bone mineral density and bone turnover markers in postmenopausal osteoporosis. Rheumatol Int 26: 195-200 https://doi.org/10.1007/s00296-004-0544-z
  48. Erye DR. 1996. Biochemical markers of bone turnover. In Primer on the metabolic bone diseases and disorder of mineral metabolism. 3rd ed. Favus MJ, ed. Raven Press, New York, USA. p 114-118
  49. Uebelhart D, Gineyts E, Chapuy MC, Delmas PD. 1990. Urinary excretion of pyridium crosslinks: a new marker of bone resorption in metabolic bone disease. Bone Mineral 8: 87-96 https://doi.org/10.1016/0169-6009(91)90143-N
  50. Seibel MJ, Gartenberg SJ, Ratcliffe A, Robins SP, Bilezikian JP. 1992. Urinary hydroxypyridium crosslinks of collagen in primary hyperparathyroidism. J Clin Endocrinol Metab 74: 481-486 https://doi.org/10.1210/jc.74.3.481
  51. Christel P, Catherine BP, Brigitte C, Patrice L, Marie-Jeanne D, Jean-Pierre B, Veronique C. 2001. Soybean isoflavones dose-dependently reduce bone turnover but do not reverse established osteopenia in adult ovariectomized rats. J Nutr 131: 723-728