Production of Antifungal Materials by Bacillus sp. Which Inhibit Growth of Phytophthora infestans and Fusarium oxysporum

Phytophthora infestans와 Fusarium oxysporum의 생장을 저해하는 Bacillus 분리균주들의 항진균성 물질 생성능

  • 이강형 (강원대학교 자연과학대학 생명과학부) ;
  • 송홍규 (강원대학교 자연과학대학 생명과학부)
  • Published : 2008.09.30

Abstract

Late blight, one of the most important disease in many agricultural crops, is caused by Phytophthora infestans. Fusarium wilt is a vascular disease of many plants caused by Fusarium oxysporum. Some bacteria isolated from rhizosphere were screened for their ability to inhibit the growth of F. oxysporum and P. infestans. Productions of siderophore, $\beta-1$,3-glucanase, hydrogen cyanide and chitinase by 4 isolated strains were examined. Among them, Bacillus sp. RFO41 most effectively inhibited the growth of F. oxysporum. The highest productions of siderophore and $\beta-l$,3-glucanase were shown in the culture of Bacillus sp. RFO41. Bacillus strain PS2 was most effective against P. infestans. PS2 showed the highest production of chitinase and hydrogen cyanide. A significant relationship was shown between the antagonistic effects of isolates against F. oxysporum and P. infestans and their production level of siderophore, $\beta-1$,3-glucanase, hydrogen cyanide, and chitinase.

대표적인 식물병원성 곰팡이 인 Phytophthora infestans와 Fusarium oxysporum의 생장을 저해하는 근권세균들을 토양에서 분리하여 동정하였으며 이 균주들이 분비하는 항진균성 물질인 siderophore, $\beta-1$,3-glucanase, hydrogen cyanide와 chitinase의 생성능을 조사하였다. 분리균주 중 Bacilus sp. RFO41은 F. oxysporum의 생장을 가장 효율적으로 억제하였으며, siderophore 생성능과 $\beta-1$,3-glucanase의 활성이 가장 우수하였다. 또 다른 분리균주인 Bacilus sp. PS2는 P. infestans의 생장을 가장 많이 억제하였으며, chitinase 활성과 hydrogen cyanide 생성능이 가장 우수하였다. F. oxysporum과 P. infestans에 대한 항진균 효과는 근권세균이 생산하는 siderophore, $\beta-1$,3-glucanase, hydrogen cyanide와 chitinase의 활성에 따라 차이가 있음을 알 수 있었다.

Keywords

References

  1. 박성민, 이준석, 박치덕, 이정훈, 정혁준, 유대식. 2006. 검은별무늬병균 Cladisporium cucumerium 40576에 대한 길항균주 Bacillus subtilis KMU-13의 선발 및 항진균 활성. Kor. J. Biotechol. Bioeng. 21, 42-48
  2. 한길환, 이창은, 김상달. 1999. 항진균성 방선균 Promocromonospora sp. HK-28이 생산하는 chitinase와 항생물질에 의한 시드름병균 F. oxysporum의 생육억제. Kor. J. Appl. Microbiol. Biotechnol. 27, 349-353
  3. Bernhaed, S. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophore. Anal. Biochem. 160, 47-56 https://doi.org/10.1016/0003-2697(87)90612-9
  4. David, A.M., A.M. Patricia, E.H. Larry, and H.F. Jennifer. 2002. Siderophore production by an aerobic Pseudomonas mendocina bacterium in the presence of kaolinite. Chem. Geol. 188, 161-170 https://doi.org/10.1016/S0009-2541(02)00077-3
  5. Frankowski, J., M. Lorito, F. Scala, R. Schmidt, G. Berg, and H. Bahl. 2001. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch. Microbiol. 176, 421-426 https://doi.org/10.1007/s002030100347
  6. Fridlender, M., J. Inbarm, and I. Chet. 1993. Biological control of soilborne plant pathogens by a $\beta$-1,3-glucanase-producing Pseudomonas cepacia. Soil Biol. Biochem. 25, 1211-1221 https://doi.org/10.1016/0038-0717(93)90217-Y
  7. Inbar, J. and I. Chet. 1991. Evidence that chitinase produced by Aeromonas caviae is involved in the biological control of soilborne plant pathogens by this bacteria. Soil Biol. Biochem. 23, 973-978 https://doi.org/10.1016/0038-0717(91)90178-M
  8. Kim, K.J., S.H. Eom, S.P. Lee, H.S. Jung, S. Kamoun, and Y.S. Lee. 2005. A genetic marker associated with the A1 mating type locus in Phytothphora infestans. J. Microbiol. Biotechnol. 15, 502-509
  9. Kim, P.I. and K.Ch. Chung. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. Microbiol. Lett. 234, 177-183 https://doi.org/10.1111/j.1574-6968.2004.tb09530.x
  10. Kremer, R.J. and S. Thouraya. 2001. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr. Microbiol. 43, 182-186 https://doi.org/10.1007/s002840010284
  11. Leeman, M., J.A. Van Pelt, M.J. Hendrickx, R.J. Scheffer, P.A.H.M. Bakker, and B. Schippers. 1995. Biocontrol of Fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathol. 85, 1301-1305 https://doi.org/10.1094/Phyto-85-1301
  12. Maurhofer, M., C. Reimmann, P.S. Sacherer, S. Heeb, D. Haas, and G. Defago. 1998. Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathol. 88, 678-684 https://doi.org/10.1094/PHYTO.1998.88.7.678
  13. Maidak, B.L. J.R. Cole, C.T. Parker, Jr., G.M. Garrity, N. Larsen, B. Li, T.G. Lilburn, M.J. McCaughey, G.J. Olsen, R. Overbeek, S. Pramanik, T.M. Schmidt, J.M. Tiedje, and C.R. Woese. 1997. A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res. 27, 171-173 https://doi.org/10.1093/nar/27.1.171
  14. Meena, B., T. Marimuthut, P. Vidhyasekaran, and R. Velazhahan. 2001. Biological control of root rot of groundnut with antagonistic Pseudomonas fluorescens strains. J. Plant Dis. Protect. 208, 369-381
  15. Merav, K., O. Matianna, C. Ilan, and C. Leonid. 2003. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanism of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum disease. Soil Biol. Biochem. 35, 323-331 https://doi.org/10.1016/S0038-0717(02)00283-3
  16. Nagarajkumar, M., R. Bhaskaran, and R. Velazhahan. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159, 73-81 https://doi.org/10.1016/j.micres.2004.01.005
  17. Niranjan, S.R., H.S. Shetty, and M.S. Reddy. 2005. Plant growth promoting rhizobacteria: Potential green alternative for plant productivity, p. 197. In Z.A. Siddiqui (ed.), PGPR: Biological and Biofertilization. Springer, Dordrecht, Netherlands
  18. Raaska, L., L. Viikari, and T.M. Sandholm. 1993. Detection of siderophores in growing cultures of Pseudomonas spp.. J. Indust. Microbiol. 11, 181-186 https://doi.org/10.1007/BF01583720
  19. Welbaum, G., A.V. Struz, Z. Dong, and J. Nowak. 2004. Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit. Rev. Plant Sci. 23, 175-193 https://doi.org/10.1080/07352680490433295
  20. Weststejin, W.A. 1990. Fluorescent pseudomonads strain E11-2 as biological agent for Pythium root rot in tulip. Neth. J. Plant Pathol. 96, 272-272
  21. Xu, G.W. and D.C. Gross. 1986. Selection of fluorescent pseudomonads antagonistic to Erwinia carotocora and suppressive of potato seed piece decay. Phytopathol. 76, 414-422 https://doi.org/10.1094/Phyto-76-414
  22. Zhang, S., A.L. Moyne, M.S. Reddy, and J.W. Kloepper. 2002. The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biological Control 25, 288-296 https://doi.org/10.1016/S1049-9644(02)00108-1
  23. Zhang, Z. and G.Y. Yuen. 1999. The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana. Phytopathol. 90, 384-389 https://doi.org/10.1094/PHYTO.2000.90.4.384