Comparison of Phylogenetic Characteristics of Bacterial Populations in a Quercus and Pine Humus Forest Soil

활엽수림과 침엽수림 부식토 내 세균군집의 계통학적 특성 비교

  • 한송이 (목원대학교 생명산업학부) ;
  • 조민혜 (목원대학교 미생물생태자원연구소) ;
  • 황경숙 (목원대학교 생명산업학부)
  • Published : 2008.09.30

Abstract

Chemical and microbial characteristics of bacterial populations were investigated in a quercus and pine humus forest soil. Soil pH was $5.3\pm0.4$ and $4.1\pm0.9$ from each sample of a quercus and pine humus forest soil; C/N ratio of humus forest soil was $17.84\pm4.6%$ and $21.76\pm8%$, respectively. Total organic acid was investigated as 69.57 mM/g dry soil and 53.72 mM/g dry soil in each humus forest soil. Glutamine, pyruvate, succinate, lactic acid and acetic acid of pine humus forest soil were $1.5\sim4.5$ times higher than those of quercus humus forest soil. As we evaluated phylogenetic characteristics of bacterial populations by 16S rRNA-ARDRA analysis with DNA extracted from each humus forest soil. Based on the 16S rRNA sequences, 44 clone from ARDRA groups of quercus humus forest soil were classified into 7 phyla: ${\alpha},{\beta},{\gamma},{\delta}$-Proteobacteria, Acidobacteria, Actinobacteria, and Firmicutes. Thirty-two clone from ARDRA groups of pine humus forest soil were classified into 8 phyla: ${\alpha},{\beta},{\gamma}$-Proteobacteria, Acidobacteria, Bacteroides, Verrucomicrobia, Planctomycetes, and Gemmatomonadetes. According to PCA (Principal Component Analysis) based on 16S rRNA base sequence, there were three main groups of bacteria. All clone of Cluster I were originated from quercus humus forest soil, while 67% clone of Cluster II and 63% clone of Clusters III were separated from pine humus forest soil.

충남 계룡산 북사면 지역의 대표군락인 상수리림과 소나무림 부식토의 화학적 및 미생물학적 특성을 비교검토한 결과, 상수리림 부식토의 pH는 $5.3\pm0.4$, 소나무림의 pH는 $4.1\pm0.9$이었으며, 소나무림 부식토 내 탄질율은 $21.76\pm8%$로 상수리림보다 높게 나타났다. 상수리림과 소나무림 부식토 내 총 유기산은 각각 69.57 mM/g dry soil, 153.72 mM/g dry soil로 나타났으며 소나무림 부식토 내 glutamine, pyruvate, succinate, lactic acid 및 acetic acid의 함량이 상수리림 부식토에 비해 약 $1.5\sim4.5$배 높게 나타났다. 상수리림 부식토 내 전세균수는 소나무림 보다 약 16배, 생균수는 약 2배 높게 검출되었다. 각 부식토로부터 직접 DNA를 추출하여 16S rRNA-ARDRA법에 의한 세균군집의 계통학적 특성을 평가한 결과, 상수리림 부식토로부터 분리된 대표 clone은 ${\alpha}-$, ${\beta}-$, ${\gamma}-$, ${\delta}$-Proteobacteria, Firmicutes, Acidobacteria 및 Actinobacteria의 7개 계통군이 확인되었고, 소나무림 부식토외 대표 clone은 ${\alpha}-$, ${\beta}-$, ${\gamma}$-Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Verrucomicrobia 그리고 Bacteroidetes의 8개의 계통군이 확인되었다. Shannon-Wiener법에 의해 다양성 지수를 산출한 결과, 소나무림 부식토 내 세균군집의 다양도는 3.63으로 상수리림보다 높게 나타났으며 PCA 분석을 실시한 결과, Clusters I에 속하는 모든 clone은 상수리림 부식토에서 유래된 clone이었으며, Clusters II에 속하는 clone의 67%, Clusters III에 속하는 clone의 63%가 소나무림 부식층 토양으로부터 유래된 clone으로 확인되어 상수리림과 소나무림 부식토내 세균 군집구조는 매우 특징적인 계통학적 특성을 나타내었다.

Keywords

References

  1. 계룡산 국립공원관리공단. 1994. 계룡산 자연자원조사
  2. 김춘식, 임종환, 신준환. 2003. 광릉 천연활엽수림의 낙엽 낙지와 낙엽분해에 따른 양분동태 2003. 한국농림기상학회지 5, 87-93
  3. 김효정, 이미정, 이규석, 박관수, 송호경. 2004. 계룡산 상부 지역의 산림식생. 환경생물학회지 22, 127-132
  4. 농촌진흥청. 1998. 토양화학분석법
  5. 박진숙, 황경숙, 천종식. 2005. 미생물의 분류 동정 실험법. 월드사이언스
  6. 손희성, 한송이, 황경숙. 2007. DNA 직접추출법에 따른 산림토양 부식층 내 세균군집의 계통학적 다양성 비교. 한국 미생물학회지 43, 210-216
  7. 이규진, 문형태. 2005. 상수리나무림의 유기탄소 분포에 관한 연구. 한국생태학회지 28, 265-270
  8. 이승우, 원형규, 신만용, 손영모, 이윤영. 2007. 산림 입지토양 환경요인에 의한 상수리나무와 신갈나무의 적지추정. 한국토양비료학회지 40, 429-434
  9. 한송이, 김윤지, 황경숙. 2006. 16S rRNA-ARDRA법을 이용한 소나무림과 상수리나무림 토양 내 VBNC 세균군집의 계통학적 특성 비교. 한국미생물학회지 42, 110-124
  10. 황경숙, 유승헌. 1995. 유기영양분 농도에 따른 토양세균의 증식양상과 통상 및 편성 저영양세균의 분리. 한국미생물학회지 21, 319-324
  11. 新.土の微生物(1) 日本土壤微生物硏究編. 博友社(日本, 東京). 129-154
  12. Alexander, M. 1977. Introduction to soil microbiology. John Wiley and Sons, New York, N.Y., USA
  13. Berg, B. and G.I. Agren. 1984. Decomposition of needle litter and its organic chemical components: theory and field experiments. Long-term decomposition in a Scots pine forest III. Can. J. Bot. 62, 2880-2888 https://doi.org/10.1139/b84-384
  14. Bloomfield, S.F., G.S.A.B. Stewart, C.E.R. Dodd, I.R. Booth, and E.G.M. Power. 1998. The viable but non-culturable phenomenon explained? Microbiology 144, 1-3 https://doi.org/10.1099/00221287-144-1-1
  15. Chandler, D.P., R.W. Schreckhise, J.L. Smith, and H. Bolton, Jr. 1997. Electroelution to remove humic compounds from soil DNA and RNA extracts. J. Microbiol. Methods 28, 11-19 https://doi.org/10.1016/S0167-7012(96)00957-8
  16. Colwell, R.R., P.R. Brayton, D.J. Grimes, D.B. Roszak, S.A. Hug, and L.M. Palmer. 1985. Viable but non-culturable Vibrio cholerae and related pathogens in the environment: Implications for release of genetically engineered microorganisms. Biotechnology 3, 817-820 https://doi.org/10.1038/nbt0985-817
  17. Curtis, T.P., W.T. Sloan, and J.W. Scannell. 2002. Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 99, 10494-10499
  18. Goodfellow, M. and S.T. Williams. 1983. Ecology of actinomycetes. Ann. Rev. Microbiol. 37, 189-216 https://doi.org/10.1146/annurev.mi.37.100183.001201
  19. Holm, E. and V. Jensen. 1972. Aerobic chemoorganotrophic bacteria of a Danish beech forest. Oikos 23, 248-260 https://doi.org/10.2307/3543413
  20. Insam, H. and K. Haselwandter. 1989. Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79, 174-178 https://doi.org/10.1007/BF00388474
  21. Johnson, J.L. 1994. Similarity analysis of rRNAs, p. 683-700. In P. Gerhardt, R.E.G. Murray, W.A. Wood, and N.R. Krieg (eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C., USA
  22. Kim, J.G. and N.K. Chang. 1989. Litter production and decomposition in the Pinus rigida plantation in Mt. Kwan-ak. Korean J. Ecol. 12, 9-20
  23. Kim, J.H. and H.W. Lee. 1989. Growth of soil microorganism for the leachates from leaf litter. Korean J. Ecol. 12, 67-74
  24. Kogure, K., U. Simidu, and N. Taga. 1984. An improved direct viable count method for aquatic bacteria. Arch. Hydrobiol. 102, 117-122
  25. Kogure, K., U. Simidu, N. Taga, and R.R. Colwoll. 1987. Correlation of direction of direct viable counts with heterotrophic activity for marine bacteria. Appl. Environ. Microbiol. 53, 2332-2337
  26. Lane, D.J. 1991. 16S/23S rRNA sequencing, p. 115-175. In E. Stackebrandt and M. Goodfellow (eds.), Nucleic acid techniques in bacterial systematics, John Wiley and Sons, Chichester, England
  27. Martin, J.P. and D.D. Focht. 1977. Biological properties of soils, p. 115-169. In L.F. Elliott and F.J. Stevenson (eds.), Soils for management of organic wastes and waste waters. Soil Science Society of America, Madison, Wis., USA
  28. Marschner, P., E. Kandeler, and B. Marschner. 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 35, 453-461 https://doi.org/10.1016/S0038-0717(02)00297-3
  29. Mun, H.T. and H.T. Joo. 1994. Litter production and decomposition in the Quercus acutissima and Pinus rigida forests. Korean J. Ecol. 17, 345-353
  30. Mun, H.T. and J.H. Kim. 1992. Litterfall decomposition, and nutrient dynamics of litter in red pine (Pinus densiflora) and Chinese thuja (Thuja orientalis) stands in the lime stone area. Korean J. Ecol. 15, 147-155
  31. Nannipieri, P., J. Ascher, M.T. Ceccherini, L. Landi, G. Pietramellara, and G. Renella. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54, 655-670 https://doi.org/10.1046/j.1351-0754.2003.0556.x
  32. Park, B.K. and M.R. Kim. 1985. The decomposition rate of litter and soil microorganisms on slope directions. Korean J. Ecol. 8, 31-37
  33. Rudi, K., M. Zimonja, and T. Naes. 2006. Alignment idependent bi-linear multivariate modeling (AIBIMM) for global analyses of 16S rRNA phylogeny. Int. J. Syst. Evol. Microbiol. 56, 1565-1575 https://doi.org/10.1099/ijs.0.63936-0
  34. Rudi, K., G.H. Kleiberg, R. Heiberg, and J.T. Rosnes. 2007 Rapid identification and classification of bacteria by 16S rRNA restriction fragment melting curve analyses (RFMCA). Food Microbiol. 24, 474-481 https://doi.org/10.1016/j.fm.2006.09.006
  35. Scow, K.M., M.A. Bruns, K. Graham, D. Bossio, and E. Schwartz. 1998. Development of indices of microbial community structure for soil quality assessment, p. 110-123. In A. Zabel and G. Sposito (eds.), Soil Quality in the California Environment. Kearny Foundation of Soil Science Annual Report of Research Projects 1997-1998
  36. Stackebrandt, E., W. Liesack, and B.M. Goebel. 1993. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J. 7, 232-236 https://doi.org/10.1096/fasebj.7.1.8422969
  37. Stevenson, F.J. 1994. Humus chemistry: Genesis, composition, reactions, 2nd ed. John Wiley and Sons, New York, N.Y., USA
  38. Vaneechoutte, M., R. Rossau, P. De Vos, M. Gillis, D. Janssens, N. Paepe, A. De Rouck, T. Fiers, G. Claeys, and K. Kersters. 1992. Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DNA restriction analysis (ARDRA). FEMS Microbiol. Lett. 93, 227-234 https://doi.org/10.1111/j.1574-6968.1992.tb05102.x
  39. Yang, S.S., H.Y. Fan, C.K. Yang, and I.C. Lin. 2003. Microbial population of spruce soil in Tatachia mountain of Taiwan. Chemosphere 52, 1489-1498 https://doi.org/10.1016/S0045-6535(03)00487-9
  40. Yu, Y., M. Breitbart, P. McNairnie, and F. Rohwer. 2006. Fast-GroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics 7, 57 https://doi.org/10.1186/1471-2105-7-57