Functional Role of $^{60}RR^{61}$ in 23S rRNA Methylation, Which is in N-Terminal End Region of ErmSF

ErmSF의 N-Terminal End Region에 존재하는 $^{60}RR^{61}$의 23S rRNA Methylation에서의 역할

  • Jin, Hyung-Jong (Department of Bioscience and Biotechnology, College of Natural Science, The University of Suwon)
  • 진형종 (수원대학교 자연과학대학 생명공학과)
  • Published : 2008.09.30

Abstract

ErmSF is one of the proteins which are produced by Streptomyces fradiae to avoid suicide by its autogenous macrolide antibiotic, tylosin and one of ERM proteins which are responsible for transferring the methyl group to $A_{2058}$ (Escherichia coli coordinate) in 23S rRNA, which reduces the affinity of MLS (macrolide-lincosamide-streptogramin B) antibiotics to 23S rRNA, thereby confers the antibiotic resistance on microorganisms ranging from antibiotic producers to pathogens. ErmSF contains an extra N-terminal end region (NTER), which is unique to ErmSF and 25% of amino acids of which is arginine known well to interact with RNA. Noticeably, arginine is concentrated in $^{58}RARR^{61}$ and functional role of each arginine in this motif was investigated through deletion and site-directed mutagenesis and the activity of mutant proteins in cell R60 and R61 was found to play an important role in enzyme activity through the study with deletion mutant up to R60 and R61. With the site-directed mutagenesis using deletion mutant of 1 to 59 (R60A, R61A, and RR60, 61AA), R60 was found more important than R61 but R61 was necessary for the proper activity of R60 and vice versa. And these amino acids were presumed to assume a secondary structure of $\alpha$-helix.

ErmSF는, 235 rRNA의 A2058에 methylation 시켜서 macrolide-lincosamide-streptogramin B ($MLS_B$)계 항생제의 부착을 저해함으로써 항생제의 활성을 억제하는 내성인자 단백질인 ERM 단백질의 하나로, 다른 ERM 단백질과는 달리 긴 N-terminal end region을 가지고 있고 이 부위의 25%를 arginine이 차지하고 있다. 특히 $^{58}RARR^{61}$ 부위에 arginine이 모여 있어서 여기에 존재하는 R의 역할을 알아보기 위해 1-57, 1-59 그리고 1-60과 1-61이 제거된 결손 변이 단백질을 대장균에 발현하고 그 활성을 성장곡선을 작성하여 알아보았다. 그 결과 R60과 R6l이 활성에 중요한 것으로 관찰되었다. 1-59의 아미노산이 결손 된 유전자를 사용하여 R60A, R61A와RR60, 61AA의 위치선정 치환 변이 단배질의 세포내 활성을 측정하여 본 결과 R60의 역할이 R6l보다 큰 것으로 관찰되었으며 이들의 활성에서의 역할은 상호보완적인 것으로 나타났다. 그리고 이 아미노산들이 2차 구조인 $\alpha$-helix의 일부일 것으로 추정되었다.

Keywords

References

  1. 이학진, 진형종. 2004. ErmSF에서 특이적으로 발견되는 N-terminal end region의 점차적인 제거에 의한 활성에 중요한 아미노산의 규명. Kor. J. Microbiol. 40, 257-262
  2. Baick, J.W., J.H. Yoon, S. Namgoong, D. Sll, S.I. Kim, S.H. Eom, and K.W. Hong. 2004. Growth inhibition of Escherichia coli dur-ing heterologous expression of Bacillus subtilis glutamyl-tRNA synthetase that catalyzes the formation of mischarged Glutamyl-$tRNA^{Gln}$. J. Microbiol. 42, 111-116
  3. Birmingham, V.A., K.L. Cox, J.L. Larson, S.E. Fishman, C.L. Hershberger, and E.T. Seno. 1986. Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae. Mol. Gen. Genet. 204, 532-539 https://doi.org/10.1007/BF00331036
  4. Bussiere, D.E., S.W. Muchmore, C.G. Dealwis, G. Schluckebier, V.L. Nienaber, R.P. Edalji, K.A. Walter, U.S. Ladror, T.F. Holzman, and C. Abad-Zapatero. 1998. Crystal structure of ErmC', an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry 37, 7103-7112 https://doi.org/10.1021/bi973113c
  5. Cocito, C., M. Di. Giambattista, E. Nyssen, and P. Vannuffel. 1997. Inhibition of protein synthesis by streptogramins and related antibiotics. J. Antimicrob. Chemother. 39, 7-13 https://doi.org/10.1093/jac/39.suppl_1.7
  6. 'Frontiers in Biotechnology: Antibiotic Resistance'. 1994. Science 264, 317-476
  7. Jin, H.J. 1999. ermSF, a ribosomal RNA adenine N6-methyltransferase gene from Streptomyces fradiae, confers MLS (macrolidelincosamide-streptogramin B) resistance to E. coli when it is expressed. Mol. Cells 9, 252-257
  8. Kovalic, D., J.H. Kwak, and B. Weisblum. 1991. General method for direct cloning of DNA fragments generated by the polymerase chain reaction. Nucleic Acid Res. 19, 4650
  9. Kovalic, D., R.B. Giannattasio, H.J. Jin, and B. Weisblum. 1994. 23S rRNA Domain V, a fragment that can be specifically methylated in vitro by the ErmSF (TlrA) methyltransferase. J. Bacteriol. 176, 6992-6998 https://doi.org/10.1128/jb.176.22.6992-6998.1994
  10. Kwon, A.R., Y.H. Min, E.J. Yoon, J.A. Kim, M.J. Shim, and E.C. Choi. 2006. ErmK leader peptide : amino acid sequence critical for induction by erythromycin. Arch. Pharm. Res. 29, 1154-1157 https://doi.org/10.1007/BF02969307
  11. Lafontaine, D., J. Delcour, A.L. Glasser, J. Desgrs, and J. Vandenhaute. 1994. The DIM1 gene responsible for the conserved m6(2) Am6(2)A dimethylation in the 3'-terminal loop of 18S rRNA is essential in yeast. J. Mol. Biol. 241, 492-497 https://doi.org/10.1006/jmbi.1994.1525
  12. Roberts, M.C., J. Sutcliffe, P. Courvalin, L.B. Jensen, J. Rood, and H. Seppala. 1999. Nomenclature for macrolide and macrolide-lincomycin-streptogramin B resistance determinants. Antimicrob. Agents Chemother. 43, 2823-2830
  13. Roberts, M.C. 2004. Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol. Biotechnol. 28, 47-62 https://doi.org/10.1385/MB:28:1:47
  14. Schluckebier, G., P. Zhong, K.D. Stewart, T.J. Kavanaugh, and C. Abad-Zapatero. 1999. The 2.2 A structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. J. Mol. Biol. 289, 277-291 https://doi.org/10.1006/jmbi.1999.2788
  15. Seppala, H., M. Skurnik, H. Soini, M.C. Roberts, and P. Huovinen. 1998. A novel erythromycin resistance methylase gene (ermTR) in Streptococcus pyogenes. Antimicrob. Agents Chemother. 42, 257-262 https://doi.org/10.1093/jac/42.2.257
  16. Skinner, R., E. Cundliffe, and F.J. Schmidt. 1983. Site for action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J. Biol. Chem. 258, 12702-12706
  17. Studier, F.W. and B.A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113-130 https://doi.org/10.1016/0022-2836(86)90385-2
  18. Vester, B. and S. Douthwaite. 1994. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase. J. Bacteriol. 176, 6999-7004 https://doi.org/10.1128/jb.176.22.6999-7004.1994
  19. Weaver, J.R. and P.A. Pattee. 1964. Inducible resistance to erythromycin in Staphylococcus aureus. J. Bacteriol. 88, 574-580
  20. Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577-585 https://doi.org/10.1128/AAC.39.3.577