Development of Trans-Splicing Aptazyme Which Can Specifically Modify Hepatitis C Virus Genome

C형 간염바이러스(HCV) 유전체를 특이적으로 변형할 수 있는 Trans-Splicing Aptazyme 발굴

  • Kim, Ju-Hyun (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Lee, Chang-Ho (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Jang, Sun-Young (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Lee, Seong-Wook (Department of Molecular Biology and Institute of Nanosensor and Biotechnology, Dankook University)
  • 김주현 (단국대학교 자연과학부 분자생물학과 나노센서 바이오텍 연구소) ;
  • 이창호 (단국대학교 자연과학부 분자생물학과 나노센서 바이오텍 연구소) ;
  • 장선영 (단국대학교 자연과학부 분자생물학과 나노센서 바이오텍 연구소) ;
  • 이성욱 (단국대학교 자연과학부 분자생물학과 나노센서 바이오텍 연구소)
  • Published : 2008.09.30

Abstract

For the development of specific and effective basic genetic materials to inhibit replication of hepatitis C virus (HCV), HCV genome-targeting trans-splicing aptazyme, which activity is allosterically regulated by a specific ligand, was developed. The aptazyme was designed to be comprised of sequence of RNA aptamer to the ligand, communication module sequence which can transfer structural transition for inducing ribozyme activity upon binding the ligand to the aptamer, and trans-splicing ribozyme targeting +199 nt of HCV IRES. Especially, when the aptamer and the communication module was inserted at both P6 and P8 catalytic domain of the specific ribozyme, allosteric activity of the aptazyme was the most induced. The aptazyme was shown to induce activity of trans-splicing reaction specifically and efficiently only in the presence of the specific ligand, but neither in the absence of any ligand nor in the presence of control ligand. This aptazyme can be used as a specific and effective genetic agent against HCV, and a tool for the isolation of anti-HCV lead compounds.

C형 간염바이러스(hepatitis C virus; HCV) 복제를 효과적이며 특이적으로 제어할 수 있는 유전산물을 개발하기 위하여 특정 리간드 존재에 의해 allosteric하게 그 활성이 조절될 수 있는 HCV 유전체 표적 trans-splicing 리보자임(trans-splicing aptazyme)을 발굴하였다. 이러한 trans-splicing aptazyme은 특정 리간드와 특이적으로 결합하는 RNA aptamer 부위, aptamer와 리간드와의 결합에 의해 리보자임 활성을 유도할 수 있도록 구조적 변이를 전달할 수 있는 communication module부위 및 HCV IRES의 +199 nt를 인지하는trans-splicing리보자임 등으로 구성되도록 설계하였다. 특히 trans-splicing 리보자임의 catalytic core의 P6과 P8 부위에 aptamer와 communication module을 삽입하였을 때 가장 allosteric하게 리보자임 활성이 유도되었다. 이러한 리보자임은 리간드가 없거나 대조 리간드가 존재할 때에는 trans-splicing 반응을 유도하지 못하였으나 특정 리간드가 존재할 때에만 효과적이며 특이적으로 trans-splicing 반응을 유도하여 표적 RNA를 변형시킬 수 있음을 관찰하였다. 이러한 aptazyme은 HCV 증식에 대해 특이적이며 효과적인 억제를 위한 선도물질로 이용 가능할 뿐 아니라 HCV 치료선도 물질의 스크리닝용 도구로서도 활용될 수 있을 것이다.

Keywords

References

  1. Ali, N. and A. Siddiqui. 1995. Interaction of polypyrimidine tractbinding protein with the 5' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J. Virol. 69, 6367-6375
  2. Anwar, A., N. Ali, R. Tanveer, and A. Siddiqui. 2000. Demonstration of functional requirement of polypyrimidine tract-binding protein by SELEX RNA during hepatitis C virus internal ribosome entry site-mediated translation initiation. J. Biol. Chem. 275, 34231-34235 https://doi.org/10.1074/jbc.M006343200
  3. Araki, M., Y. Okuno, Y. Hara, and Y. Sugiura. 1998. Allosteric regulation of a ribozyme activity through ligand-induced conformational change. Nucleic Acids Res. 26, 3379-3384 https://doi.org/10.1093/nar/26.14.3379
  4. Biroccio, A., J. Hamm, I. Incitti, R. De Francesco, and L. Tomei. 2002. Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. J. Virol. 76, 3688-3696 https://doi.org/10.1128/JVI.76.8.3688-3696.2002
  5. Chevalier, C., A. Saulnier, Y. Benureau, D. Flechet, D. Delgrange, F. Colbere-Garapin, C. Wychowski, and A. Martin. 2007. Inhibition of hepatitis C virus infection in cell culture by small interfering RNAs. Mol. Ther. 15, 1452-1462 https://doi.org/10.1038/sj.mt.6300186
  6. Choo, Q.L., G. Kuo, A.J. Weiner, L.R. Overby, D.W. Bradley, and M. Houghton. 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359-362 https://doi.org/10.1126/science.2523562
  7. Hahm, B., D.S. Han, S.H. Back, O.K. Song, M.J. Cho, C.J. Kim, K. Shimotohno, and S.K. Jang. NS3-4A of hepatitis C virus is a chymotrypsin-like protease. 1995. J. Virol. 69, 2534-2539
  8. Hermann, T. and D.J. Patel. 2000. Adaptive recognition by nucleic acid aptamers. Science 287, 820-825 https://doi.org/10.1126/science.287.5454.820
  9. Hino, K., S. Sainokami, K. Shimoda, S. Iino, Y. Wang, H. Okamoto, Y. Miyakawa, and M. Mayumi. 1994. Genotypes and titers of hepatitis C virus for predicting response to interferon in patients with chronic hepatitis C. J. Med. Virol. 42, 299-305 https://doi.org/10.1002/jmv.1890420318
  10. Hwang, B., J.S. Cho, H.J. Yeo, J.H. Kim, K.M. Chung, K. Han, S.K. Jang, and S.W. Lee. 2004. Isolation of specific and high-affinity RNA aptamers against NS3 helicase domain of hepatitis C virus. RNA 10, 1277-1290 https://doi.org/10.1261/rna.7100904
  11. Jenison, R.D., S.C. Gill, A. Pardi, and B. Polisky. 1994. High-resolution molecular discrimination by RNA. Science 263, 1425-1429 https://doi.org/10.1126/science.7510417
  12. Kapadia, S.B., A. Brideau-Andersen, and F.V. Chisari. 2003. Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc. Natl. Acad. Sci. USA 100, 2014-2018
  13. Kertsburg, A. and G.A. Soukup. 2002. A versitile communication module for controlling RNA folding and catalysis. Nucleic Acids Res. 30, 4599-4606 https://doi.org/10.1093/nar/gkf596
  14. Kolykhalov, A.A., K. Mihalik, S.M. Feinstone, and C.M. Rice. 2000. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J. Virol. 74, 2046-2051 https://doi.org/10.1128/JVI.74.4.2046-2051.2000
  15. Kuo, G., Q.L. Choo, H.J. Alter, G.L. Gitnick, A.G. Redeker, R.H. Purcell, T. Miyamura, J.L. Dienstag, M.J. Alter, and C.E. Stevens. 1989. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science 244, 362-364 https://doi.org/10.1126/science.2496467
  16. Macejak, D.G., K.L. Jensen, S.F. Jamison, K. Domenico, E.C. Roberts, N. Chaudhary, I. Von Carlowitz, L. Bellon, M.J. Tong, A. Conrad, P.A. Pavco, and L.M. Blatt. 2000. Inhibition of hepatitis C virus (HCV)-RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology 31, 769-776 https://doi.org/10.1002/hep.510310331
  17. Pagliaro, L., A. Craxi, C. Cammaa, F. Tine, V. Di Marco, L. Iacono, and P. Almasio. 1994. Interferon-alpha for chronic hepatitis C: an analysis of pretreatment clinical predictors of response. Hepatology 19, 820-828
  18. Penchovsky, R. and R.R. Breaker. 2005. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nat. Biotechnol. 23, 1424-1433 https://doi.org/10.1038/nbt1155
  19. Penin, F., J. Dubuisson, F.A. Rey, D. Moradpour, and J.M. Pawlotsky. 2004. Structural biology of hepatitis C virus. Hepatology 39, 5-19 https://doi.org/10.1002/hep.20032
  20. Pley, H.W., K.M. Flaherty, and D.B. McKay. 1994. model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372, 111-113 https://doi.org/10.1038/372111a0
  21. Ryu, K.J., J.H. Kim, and S.W. Lee. 2003. Ribozyme-mediated selective induction of new gene activity in hepatitis C virus internal ribosome entry site-expressing cells by targeted trans-splicing. Mol. Ther. 7, 386-395 https://doi.org/10.1016/S1525-0016(02)00063-1
  22. Ryu, K.J. and S.W. Lee. 2004. Comparative analysis of intracellular trans-splicing ribozyme activity against hepatitis C virus internal ribosome entry site. J. Microbiol. 42, 361-364
  23. Saito, I., T. Miyamura, A. Ohbayashi, H. Harada, T. Katayama, S. Kikuchi, Y. Watanabe, S. Koi, M. Onji, Y. Ohta, Q. Choo, M. Houghton, and G. Kuo. 1990. Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 87, 6547-6549