Identification and Characterization of External Copper Responsive Genes of Deinococcus radiodurans

DNA Microarry를 이용한 Deinococcus radiodurans의 구리이온 특이 반응 유전자 탐색 및 특성 분석

  • Joe, Min-Ho (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Lim, Sang-Yong (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Jung, Sun-Wook (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Song, Du-Sub (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Choi, Young-Ji (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Kim, Dong-Ho (Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute)
  • 조민호 (한국원자력연구원 방사선생명공학연구부) ;
  • 임상용 (한국원자력연구원 방사선생명공학연구부) ;
  • 정선욱 (한국원자력연구원 방사선생명공학연구부) ;
  • 송두섭 (한국원자력연구원 방사선생명공학연구부) ;
  • 최영지 (한국원자력연구원 방사선생명공학연구부) ;
  • 김동호 (한국원자력연구원 방사선생명공학연구부)
  • Published : 2008.09.30

Abstract

Global gene expression of Deinococcus radiodurans, a highly radiation resistant bacterium, in response to excess copper was analyzed by using oligonucleotide microarray chip. Among 3,187 open reading frames of D. radiodurans, seventy genes showed a statistically significant expression ratio of at least 2-fold changes under growth conditions of excess copper; 64 genes were induced and 6 genes were reduced. Especially, two operons ($DRB0014{\sim}DRB0017$ and $DRB0125{\sim}DRB0121$) presumably involved in the iron transport and utilization were the most highly induced genes by excess copper. A quantitative real-time PCR assay revealed that DRB00l4 and DRB0125 are highly transcribed responding to excess copper and 2,2'-dipyridyl, an iron chelator. In addition, the transcription of both genes was not changed by excess iron and bathocuproine disulphonate, a copper chelator. These results suggested that the copper metabolism may be closely connected with the iron transport and utilization in D. radiodurans. However, the disruption of each gene, DRB00l4 and DRB0125, did not affect the copper and radiation resistance, the most well-known character of this organism.

대표적인 방사선저항성 미생물인 Deinococcus radiodurans의 구리이온($CuCl_2,250{\mu}M$)에 대한 발현체 분석을 DNA microarray를 이용하여 수행하였다. 총 3,187개의 open reading frame중 70개의 유전자 발현이 2배 이상증가(64개) 또는 감소(6개)하였다. 이들 중 흥미롭게도 철이온 흡수 관련 유전자들로 추정되는 두 개 operon ($DRB0014{\sim}DRB0017$$DRB0121{\sim}DRB0125$)의 발현이 가장 높게 증가하였다. 두 operon의 첫 번째 유전자인 DRB0014와DRB0125의 발현을 실시간 정략 PCR을 이용하여 분석한 결과, 두 유전자 모두 구리 이온($CuCl_2,250{\mu}M$) 또는 철이온 킬레이트화합물(2,2'-dipyridyl, $ 250{\mu}M$)을 첨가하였을 경우 발현이 10배 이상 증가하였으나 철이온($FeCl_3,250{\mu}M$) 또는 구리 이온 킬레이트화합물(bathocuproine disulphonate, $250{\mu}M$)이 존재할 때에는 발현이 변화하지 않았다. 따라서 D. radiodurans의 구리 대사는 철 흡수 시스템과 관련이 있는 것으로 추정된다. 그러나 DRB0014와DRB0125의 변이는D. radiodurans의 구리 저항성 및 방사선 저항성에 큰 영향을 미치지 않는 것으로 관찰되었다.

Keywords

References

  1. Banci, L., I. Bertini, S. Ciofi-Baffoni, E. Katsari, N. Katsaros, K. Kubicek, and S. Mangani. 2005. A copper(I) protein possibly involved in the assembly of CuA center of bacterial cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 102, 3994-3999
  2. Cha, J.S. and K.A. Cooksey. 1991. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. USA 88, 8915-8919
  3. Dancis, A., D. Haile, D.S. Yuan, and R.D. Klausner. 1994. The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J. Biol. Chem. 269, 25660-25667
  4. Funayama, T., I. Narumi, M. Kikuchi, S. Kitayama, H. Watanabe, and K. Yamamoto. 1999. Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans. Mutat. Res. 435, 151-161 https://doi.org/10.1016/S0921-8777(99)00044-0
  5. Georgatsou, E., L.A. Mavrogiannis, G.S. Fragiadakis, and D. Alexandraki. 1997. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Maclp activator. J. Biol. Chem. 272, 13786-13792 https://doi.org/10.1074/jbc.272.21.13786
  6. Grass, G. and C. Rensing. 2001. Genes involved in copper homeostasis in Escherichia coli. J. Bacteriol. 183, 2145-2147 https://doi.org/10.1128/JB.183.6.2145-2147.2001
  7. Halliwell, B. and J.M.C. Gutteridge. 1999. Free radicals in biology and medicine, 3rd ed., p. 105-112. Oxford University Press, NY, USA
  8. Lim, S.Y., M.H. Joe, S.S. Song, M.H. Lee, J.W. Foster, Y.K. Park, S.Y. Choi, and I.S. Lee. 2002. CuiD is a crucial gene for survival at high copper environment in Salmonella entericaserovar Typhimurium. Mol. Cells 14, 177-184
  9. Livak, K. and T. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}Ct}$ method. Methods 25, 402-408 https://doi.org/10.1006/meth.2001.1262
  10. Makarova, K.S., L. Aravind, Y.I. Wolf, R.L. Tatusov, K.W. Minton, E.V. Koonin, and M.J. Daly. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65, 44-79 https://doi.org/10.1128/MMBR.65.1.44-79.2001
  11. Makarova, K.S., M.V. Omelchenko, E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, A. Lapidus, A. Copeland, E. Kim, M. Land, K. Mavrommatis, S. Pitluck, P.M. Richardson, C. Detter, T. Brettin, E. Saunders, B. Lai, B. Ravel, K.M. Kemner,Y.I. Wolf, A. Sorokin, A.V. Gerasimova, M.S. Gelfand, J.K. Fredrickson, E.V. Koonin, and M.J. Daly. 2007. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS ONE. 26, 2(9):e955 https://doi.org/10.1371/journal.pone.0000955
  12. Nies, D.H. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27, 313-339 https://doi.org/10.1016/S0168-6445(03)00048-2
  13. Nishida, H. and I. Narumi. 2002. Disruption analysis of DR1420 and/or DR1758 in the extremely radioresistant bacterium D. radiodurans Microbiology 148, 2911-2914 https://doi.org/10.1099/00221287-148-9-2911
  14. Odermatt, A., H. Suter, R. Krapf, and M. Solioz. 1993. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J. Biol. Chem. 268, 12775-12779
  15. Odermatt, A. and M. Solioz. 1995. Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPase of Enterococcus hirae. J. Biol. Chem. 270, 4349-4354 https://doi.org/10.1074/jbc.270.9.4349
  16. Outten, F.W., C.E. Outten, J. Hale, and T.V. O'Halloran. 2000. Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J. Biol. Chem. 275, 31024-31029 https://doi.org/10.1074/jbc.M006508200
  17. Pena, M.M.O., J. Lee, and D.J. Thiele. 1999. A delicate balance: homeostatic control of copper uptake and distribution. J. Nutr. 129, 1251-1260 https://doi.org/10.1093/jn/129.7.1251
  18. Pufahl, R.A., C.P. Singer, K.L. Peariso, S.J. Lin, P.J. Schmidt, C.J. Fahrni, V.C. Culotta, J.E. Penner-Hahn, and T.V. O'Halloran. 1997. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278, 853-856 https://doi.org/10.1126/science.278.5339.853
  19. Rensing, C., B. Fan, R. Harma, B. Mitra, and B.P. Rosen. 2000. CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 97, 652-656
  20. Rensing, C. and G. Grass. 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27, 197-213 https://doi.org/10.1016/S0168-6445(03)00049-4
  21. Sambrook, J. and D.W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA
  22. Solioz, M. and A. Odermatt. 1995.Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J. Biol. Chem. 270, 9217-9221 https://doi.org/10.1074/jbc.270.16.9217
  23. Spizzo, T., C. Byersdorfer, S. Duesterhoeft, and D. Eide. 1997. The yeast FET5 gene encodes a FET3-related multicopper oxidase implicated in iron transport. Mol. Gen. Genet. 256, 547-55
  24. Van Bakel, H., E. Strengman, C. Wijmenga, and F.C. Holstege. 2005. Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism. Physiol. Genomics 22, 356-367 https://doi.org/10.1152/physiolgenomics.00055.2005
  25. White, O., J.A. Eisen, J.F. Heidelberg, E.K. Hickey, J.D. Peterson, J.D. Robert, H.H. Daniel, L.G. Michelle, C.N. William, L.R. Delwood, S.M. Kelly, Q. Haiying, J. Lingxia, P. Wanda, C. Marie, S. Mian, J.V. Jessica, L. Peter, M. Lisa, U. Terry, et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571-1577 https://doi.org/10.1126/science.286.5444.1571
  26. Wilhelm, J. and A. Pingoud. 2003. Real-time polymerase chain reaction. Chembiochem. 4, 1120-1128 https://doi.org/10.1002/cbic.200300662
  27. Yamaguchi, I.Y., M. Serpe, D. Haile, W. Yang, D.J. Kosman, R.D. Klausner, and A. Dancis. 1997. Homeostatic regulation of copper uptake in yeast via direct binding of MACl protein to upstream regulatory sequences of FREl and CTRl. J. Biol. Chem. 272, 17711-17718 https://doi.org/10.1074/jbc.272.28.17711
  28. Yamamoto, K. and A. Ishihama. 2005. Transcriptional response of Escherichia coli to external copper. Mol. Microbiol. 56, 215-227 https://doi.org/10.1111/j.1365-2958.2005.04532.x