한국 시화호와 중국 Aha호 저질토에 분포하는 이화성 아황산염 환원효소 유전자의 비교 분석

Comparative Analysis of Dissimilatory Sulfite Reductase (dsr) Gene from Sediment of Lake Sihwa, Korea and Lake Aha, China

  • Kim, In-Seon (Department of Environmental Science, Kangwon National University) ;
  • Kim, Ok-Sun (School of Biological Sciences, Seoul National University) ;
  • Jeon, Sun-Ok (Department of Environmental Science, Kangwon National University) ;
  • Witzel, Karl-Paul (Max Planck Institute of Evolutionary Biology) ;
  • Ahn, Tae-Seok (Department of Environmental Science, Kangwon National University)
  • 발행 : 2008.06.30

초록

한국의 시화호와 중국의 Aha호 저질토에서 서식하는 황산염 환원세균(sulfate reducing bacteria, SRB)의 깊이에 따른 군집구조를 비교하기 위하여, 이화성 아황산염 환원효소(EC 1.8.99.1; dissimilatory sulfite reductase, dsr) 유전자를 대상으로, polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE) 및 클론 라이브러리를 이용하여 미생물의 군집구조를 분석하였다. DGGE band 양상을 분석한 결과, Aha호 보다는 시화호에서 더 맡은 밴드를 보여 다양성이 높았고, 깊이별 차이는 나타나지 않았다. 두 서식지에서 얻은총68개 클론의 염기서열을 가지고 계통학적 분석을 한 결과 시화호에서는 Deltaproteobacteria 그룹, Firmicutes 그룹에 속해있는 Desulfotomaculum 종과 archaeal thermophilic SRB 그룹에 속해있는 Archaeoglobus 종이, Aha호에서는 Desulfotomaculum 그룹과 유사성이 높았다. 분리된 대부분의 클론들(59%)은 배양된 황산염 환원세균과는 매우 낮은 유사도를 보였고, 환경에서 분리된 클론들과도90% 이하의 유사도를 나타냈다. 총 클론을 88% 유사도를 기준으로 9그룹으로 나뉘었을 때 시하호와 Aha호의 각 클론은 서로 다른 그룹으로 존재하였다. 이러한 결과는 두 서식지의 이화성 아황산염 환원효소를 가지고 있는 미생물의 군집구조는 확연히 다르고 각 서식지에 특이적인 황산염 환원 미생물이 존재함을 시사한다.

The diversity of sulfate reducing bacteria was investigated in different depths of sediments in Lake Sihwa, Korea and Lake Aha, China by PCR amplification, denaturing gradient gel electrophoresis (DGGE) and clone libraries targeting dissimilatory sulfite redectase (dsr) gene. In the analysis of DGGE band patterns, the community compositions of dsr gene in the sediments of both lakes were significantly different whereas bands in all depths of each environment revealed similar patterns. Bands from Lake Sihwa were produced much more than those from Lake Aha, demonstrating a higher diversity of dsr gene in Lake Sihwa. Total 68 clones containing dsr gene were obtained to analyze their sequences. Sequences from the sediment of Lake Sihwa were affiliated to Deltaproteobacteria, the Gram-positive thermophilic sulfate reducers belonging to the genus Desulforomaculum and archaeal thermophilic SRB belonging to the genus Archaeoglobus, whereas sequences from the sediments of Lake Aha were related to genus Desulfotomaculum. Clones retrieved from sediment of Lake Sihwa revealed a higher numbers than those of Lake Aha, demonstrating a higher diversity of dsr gene in Lake Sihwa. Most of clones (59%) were distantly related to the known cultivated SRB with $60\sim65%$ of similarity, which were clustered only the sequences from the environments showed less than 90% similarity. These habitat specific sequences suggested that the clustered dsr sequences represent species or groups of species that were indigenous to these environments. This study showed that these lakes have a specific bacterial communities having dsr gene distinct from those in other environments such as soil and marine ecosystems around the world.

키워드

참고문헌

  1. 김인선, 남종현, 전선옥, Y. Zhao, 안태석. 2007. The vertical distribution of sulfate reducing bacteria (SRB) by Florescence In Situ Hybridization in sediments of lakes in Korea and China. Korean J. Limnol. 40, 553-559
  2. 현문식, 장인섭, 박형수, 김병홍, 김형주, 이홍금, 권개경. 1999. 시화호 저니(Sediment)에서의 유기물 및 중금속 농도와 혐기성 호흡세균과의 상관관계. Kor. J. Appl. Microbiol. Biotechnol. 3, 252-259
  3. Aron, L.M., E.B. Pamela, and T.H. Alan. 1989. Acid stress and aquatic microbial interactions, pp. 1-19. In S.R. Salem and P.D. Rao (eds.), CRC Press. Inc., Florida, USA
  4. Bahr, M., B.C. Crump, V. Klepac-Ceraj, A. Teske, M.L. Sogin, and J.E. Hobbie. 2005. Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ. Microbiol. 7, 1175-1185 https://doi.org/10.1111/j.1462-2920.2005.00796.x
  5. Barton, L.L. and F.A. Tomei. 1995. Characteristics and activities of sulfate-reducing bacteria. pp. 1-32. In L.L. Barton (ed.), Sulfate-reducing bacteria, Vol. 8, Peplum Press, New York, USA
  6. Castro, H., K.R. Reddy, and A. Ogram. 2002. Composition and function of sulfate-reducing Prokaryotes in eutrophic and Pristine areas of the Florida Everglades. Appl. Environ. Microbiol. 68, 6129-6137 https://doi.org/10.1128/AEM.68.12.6129-6137.2002
  7. Castro, H.F., N.H. Williams, and A. Ogram. 2000. Phylogeny of sulfate-reducing bacteria. FEMS Microbiol. Ecol. 31, 1-9 https://doi.org/10.1111/j.1574-6968.1985.tb01124.x
  8. Chang, Y.J., A.D. Peacock, P.E. Long, J.R. Stephen, J.P. McKinley, S.J. Macnaughton, A.K.M.A. Hussain, A.M. Saxton, and D.C. White. 2001. Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl. Environ. Microbiol. 67, 3149-3160 https://doi.org/10.1128/AEM.67.7.3149-3160.2001
  9. Colleran, E., S. Finnegan, and P. Lens. 1995. Anaerobic treatment of sulphate-containing waste streams. Antonie Van Leeuwenhoek 67, 29-46 https://doi.org/10.1007/BF00872194
  10. Crick, F.H. 1966. Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548-555 https://doi.org/10.1016/S0022-2836(66)80022-0
  11. Detmers, J., H. Strauss, U. Bergmann, K. Knittel, and J. Kuever. 2004. FISH shows that Desulfotomaculum spp. are the dominating sulfate-reducing bacteria in a pristine aquifer. Microb. Ecol. 47, 236-242
  12. Dhilon, A., A. Teske, J. Dillon, D.A. Stahl, and M.L. Sogin. 2003. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl. Environ. Microbiol. 69, 2765-2772 https://doi.org/10.1128/AEM.69.5.2765-2772.2003
  13. Geets, J., B. Borremans, L. Diels, D. Springael, J. Vangronsveld, D. Van Der Lelie, and K. Vanbroekhoven. 2006. DsrB Gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J. Microbiol. Methods 66, 194-205 https://doi.org/10.1016/j.mimet.2005.11.002
  14. Jorgensen, B.B. 1982. Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature 296, 643-645 https://doi.org/10.1038/296643a0
  15. Kaneko, R., T. Hayashi, M. Tanahashi, and T. Naganuma. 2007. Phylogenetic diversity and distribution of dissimilatory sulfite reductase genes from deep-sea sediment cores. Marin Biol. 9, 429-436
  16. Karr, E.A., W.M. Sattley, M.R. Rice, D.O. Jung, M.T. Madigan, and L.A. Achenbach. 2005. Diversity and distribution of sulfate-reducing bacteria in perimanently frozen lake fryxell, mcmurdo dry valleys, antarctica. Appl. Environ. Microbiol. 71, 6353-6359 https://doi.org/10.1128/AEM.71.10.6353-6359.2005
  17. Klein, M., M. Friedrich, A.J. Roger, P. Hugenholtz, S. Fishbain, H. Abicht, L.L. Blackall, D.A. Stahl, and M. Wagner. 2001. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J. Bacteriol. 183, 6028-6035 https://doi.org/10.1128/JB.183.20.6028-6035.2001
  18. Koizumi, Y., S. Takii, M. Nishino, and T. Nakajima. 2003. Vertical distributions of sulfate-reducing bacteria and methane-producing archaea quantified by oligonucleotide probe hybridization in the profundal sediment of a mesotrophic lake. FEMS Microbiol. Ecol. 44, 101-108 https://doi.org/10.1016/S0168-6496(02)00463-4
  19. Larsen, O., T. Lien, and N.K. Birkeland. 2001. A novel organization of the dissimilatory sulfite reductase operon of Thermodesulforhabdus norvegica verified by RT-PCR. FEMS Microbiol. Lett. 203, 81-85 https://doi.org/10.1111/j.1574-6968.2001.tb10824.x
  20. Leloup, J., L. Quillet, T. Berthe, and F. Petit. 2006. Diversity of the dsrAB (dissimilatory sulfite reductase) gene sequences retrieved from two contrasting mudflats of the Seine estuary, France. FEMS Microbiol. Ecol. 55, 230-238 https://doi.org/10.1111/j.1574-6941.2005.00021.x
  21. Leloup, J., L. quillet, C. Oger, D. Boust, and F. Petit. 2004. Molecular quantification of sulfate-reducing microorganisms (carrying dsrAB genes) by competitive PCR in estuarine sediments. FEMS Microbiol. Ecol. 47, 207-214 https://doi.org/10.1016/S0168-6496(03)00262-9
  22. Li, J.H., K.J. Purdy, S. Takii, and H. Hayashi. 1999. Seasonal changes in ribosomal RNA of sulfate-reducing bacteria and sulfate reducing activity in a freshwater lake sediment. FEMS Microbiol. Ecol. 24, 221-234
  23. Minz, D., J.L. Flax, S.J. Green, G. Muyzer, Y. Cohen, M. Wagner, B.E. Rittmann, and D.A. Stahl. 1999. Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl. Environ. Microbiol. 65, 4666-4671
  24. Muyzer, G., E.C. De Waal, A.G. Uitterlinden, G. Muyzer, E.C. De Waal, and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700
  25. Perez-Jimenez, J.R., L.Y. Young, and L.J. Kerkhof. 2001. Molecular characterization of sulfate-reducing bacteria in anaerobic hydrocarbon-degrading consortia and pure cultures using the dissimilatory sulfite reductase (dsrAB) genes. FEMS Microbiol, Ecol. 35, 145-150 https://doi.org/10.1111/j.1574-6941.2001.tb00798.x
  26. Purdy, K.J., D.B. Nedwell, T.M. Embley, and S. Takii. 1997. Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulfate-reducing bacteria in response to nutrient addition to sediment slurry microcosm from a Japanese estuary. FEMS Microbiol. Ecol. 24, 221-234 https://doi.org/10.1111/j.1574-6941.1997.tb00439.x
  27. Ravenschlag, K., K. Sahm, C. Knoblauch, B.B. Jorgensen, and R. Amann. 2000. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Appl. Environ. Microbiol. 66, 3592-3602 https://doi.org/10.1128/AEM.66.8.3592-3602.2000
  28. Sahm, K., C. Knoblauch, and R. Amann. 1999. Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine arctic sediments. Appl. Environ. Microbiol. 65, 3976-3981
  29. Scholten, J.C.M., S.B. Joye, J.T. Hollibaugh, and J.C. Murrell. 2005. Molecular analysis of the sulfate reducing and archaeal community in a Meromictic Soda Lake (Mono Lake, California) by targeting 16S rRNA, mcrA, apsA, and dsrAB genes. Microb. Ecol. 50, 29-39 https://doi.org/10.1007/s00248-004-0085-8
  30. Trimmer, M., K.J. Purdy, and D.B. Nedwell. 1997. Process measurement and phylogenic analysis of the sulfate reducing bacterial communities of two contrasting benthic sites in the upper estuary of the Great Ouse, Norfolk, UK. FEMS Microbiol. Ecol. 24, 333-342 https://doi.org/10.1111/j.1574-6941.1997.tb00450.x
  31. Wagner, M., A.J. Roger, J.L. Flax, G.A. Brusseau, and D.A. Stahl. 1998. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 2975-2982
  32. Wang, F., C. Liu, X. Liang, and Z. Wei. 2003. Remobilization of trace metals induced by microbiological activities near sediment-water interface, Aha Lake, Guiyang. Chinese Science Bulletin 48, 2352-2356 https://doi.org/10.1360/03wd0013
  33. Wang, Y.C., R.G. Huang, and G.J. Wan. 1998. The newly developed sample for collecting samples near the lacstrine sediment-water interface. Geol. Geochem. 1, 94-96
  34. Widdel, F. and F. Bak. 1992. Gram-negative mesophilic sulfate-reducing bacteria, p. 3352-3378. In A. Balows, H.G. Truper, M. Dworkin, W. Harder, and K.H. Schleifer (eds.), The prokaryotes, 2nd ed. Springer-Verlag, New York, N.Y., USA