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LOCALLY PSEUDO-VALUATION DOMAINS OF
THE FORM D[X]n,

GYU WHAN CHANG

ABSTRACT. Let D be an integral domain, X an indeterminate over D,
Ny = {f € DIX}|(Af)» = D}. Among other things, we introduce the
concept of t-locally PVDs and prove that D[X]y, is a locally PVD if and
only if D is a t-locally PVD and a UMT-domain, if and only if D[X] is a
t-locally PVD, if and only if each overring of D[X]y, is a locally PVD.

1. Introduction

Throughout this paper, D denotes an integral domain, ¢f(D) is the quotient
field of D, D is the integral closure of D in ¢f(D), X is an indeterminate over
D, and D[X] is the polynomial ring. An overring of D is a ring between D and
qf(D). The content of a polynomial f € K[X], denoted by Ay, is the fractional
ideal of D generated by the coefficients of f.

Let K = qf(D) and let F(D) (resp., f(D)) be the set of nonzero (resp.,
nonzero finitely generated) fractional ideals of D. Obviously, f(D) C F(D)
and equality holds if and only if D is a Noetherian domain. For any A € F(D),
define A, = (A™')"!, where A~! = {z € K|zA C D}, andlet A, = U{,|I C A
and I € f(D)} and A, = {r € K|zJ C A for J € f(D) with J~! = D}. For
* =wv,t or w, we say that A is a x-ideal if A, = A, while A is a mazimal *-ideal
if A is maximal among proper integral *-ideals of D. Let »-Max(D) be the set
of all maximal *-ideals of D. It is well known that if * = ¢ or w, then each
maximal *-ideal is a prime ideal; each proper integral x-ideal is contained in
a maximal x-ideal; and *-Max(D) # 0 if D is not a field. Recall that D is a
Priifer v-multiplication domain (PuvMD) if each I € f(D) is t-invertible, i.e.,
(II7Y); = D. An upper to zero in D[X] is a (height-one) prime ideal of D[X]
of the form Q; = fK[X]|ND[X], where the polynomial f € D[X] is irreducible
in K[X]. As in [20], we say that D is a UMT-domain if each upper to zero in
D[X] is a maximal t-ideal of D[X]. It is well known that D is a PuMD if and
only if Dp is a valuation domain for each P € t-Max(D) [17, Theorem 5], if
and only if D is an integrally closed UMT-domain [20, Proposition 3.2].
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A prime ideal P of D is called strongly prime if zy € P and z,y € K imply
z € Pory € P. Following [18], we say that D is a pseudo-valuation domain
(PVD) if every prime ideal of D is strongly prime; equivalently, D is a quasi-
local domain whose maximal ideal is strongly prime. As a globalization of
PVDs, D is called a locally PVD (an LPVD) if Dy is a PVD for each maximal
ideal M of D. The concept of LPVDs was introduced by Dobbs and Fontana
[11], and since a PVD is a generalization of valuation domains, an LPVD can be
considered as a generalization of Priifer domains. It is known that each integral
overring of an LPVD is an LPVD [11, Proposition 2.6] and each overring of
D is an LPVD if and only if D is an LPVD and D is a Priifer domain [11,
Theorem 2.9]. Let Int(D) = {f € K[X]|f(D) C D} be the ring of integer
valued polynomials. It is also known that if D is a Priifer domain, then Int{D)
is an LPVD if and only if Int(D) is a Priifer domain [7, Proposition 1.2] and
that if D is a Noetherian domain, then Int(D) is an LPVD if and only if D is
an LPVD with finite residue fields [7, Theorem 2.4].

Let N, = {f € D[X])|(Af)y = D} and S = {f € D[X]|Ay = D}. The
rings D[X]|n, and D[X]s have many interesting ring-theoretic properties. For
example, D is a PuMD if and only if D[X|y, is a Priifer domain, if and only if
every ideal of D[X|y, is extended from D [22, Theorems 3.1 and 3.7]. Also, D
is & UMT-domain if and only if each prime ideal of D[X ]y, is extended from D
[20, Theorem 3.1], if and only if D[X], is a Priifer domain [14, Theorem 2.5].
It is also known that D is a Krull (resp., Dedekind) domain if and only if
D[X|n, (resp., D[X]s) is a principal ideal domain [21, Theorem 22.7] (resp.,
[21, Theorem 18.6]). The purpose of this paper is to study when the rings
D[X]n, and D[X]s are PVDs or LPVDs.

Recall that if D is a PVD, then D is a valuation domain if and only if
each overring of D is a PVD [19, Proposition 2.7] and that if D is a valuation
domain, then D is a UMT-domain [14, Theorem 1.5]. But if Spec(D) is linearly
ordered under inclusion, then D is quasi-local and each prime ideal of D is a
t-ideal [22, Theorem 3.19}; so D is a UMT-domain if and only if D is a Priifer
domain. This shows that if D is a PVD, then D is a UMT-domain if and only
if each overring of D is a PVD (see Theorem 2.3). In Section 2, we show that
if D is a PVD with maximal ideal M, then D is a UMT-domain if and only
if D/P is a UMT-domain for each prime ideal P of D, if and only if D is a
valuation domain and that if M is finitely generated, then D is a UMT-domain.
Let D" be the w-integral closure of D (see Section 3 for the definition of D*).
In Section 3, we first introduce the concept of t-locally PVDs; D is a t-locally
PVD if Dp is a PVD for each maximal ¢-ideal P of D. Then we prove that if
D is a t-locally PVD, then D is a UMT-domain if and only if D¥ is a PuMD;
and each t-linked overring R of D such that R C DY is a t-locally PVD. We
also prove that D is a t-locally PVD and a UMT-domain if and only if D[X] is
a t-locally PVD, if and only if D[X]x, is an LPVD, if and only if each overring
of D[X]n, is an LPVD.

v
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The reader is referred to [16, Sections 32 and 34| and [28] for the ¢- and the
w-operation; to [14, 20] for UMT-domains; to [1, 4, 10, 11, 18, 19] for PVDs;
to 3], [8], [9], [15], [16, Section 33], or [21, Chapter IV] for the rings D[X]n,
and D[X]g; and to [16, 23] for standard definitions and notations.

2. Pseudo-valuation domains and UMT-domains

In this section, we study PVDs that are also UMT-domains. One of the
interesting and important characterizations of PVDs is that a {quasi-local)
domain D is a PVD if and only if there exists a valuation overring V of D such
that Spec(V') = Spec(D) [18, Theorem 2.7]. Let D be a PVD with maximal
ideal M. It is well known that Spec(D) is linearly ordered under inclusion
[18, Corollary 1.3] and that if D is not a valuation domain, then M ! =
{z € K|zM C D} is a valuation domain such that Spec(M ') = Spec(D) (in
particular, M is the maximal ideal of M ~') [18, Theorem 2.10]. We will say
that (D, M) is a PVD if D is a PVD with maximal ideal M.

We begin by recalling some well-known properties of strongly prime ideals.

Lemma 2.1. Let P be a strongly prime ideal of an integral domain D.

(1) Each ideal of D is comparable to P; so P = PDp.

(2) Dp is a PVD with mazimal ideal P = PDp.

(3) P is at-ideal of D.

(4) If Q is a prime ideal of D such that Q C P, then Q 1is also a strongly
prime ideal and D¢ is a valuation domain.

(5) The set of prime ideals of D contained in P is linearly ordered.

Proof. (1) Let I be an ideal of D such that I ¢ P. Choose a € I\ P, and
let b € P. Then g € P since ga = b € P and P is strongly prime; hence
beaP CaD. Thus P C aD C I. This also implies that P = PDp.

(2) Since P = PDp by (1), PDp is a strongly prime ideal of Dp. Also,
since PDp is a maximal ideal of Dp, it follows from [18, Theorem 1.4] that
DpisaPVD.

(3) Note that Spec(Dp) is linearly ordered by (2); hence PDp is a t-ideal
of Dp, and thus P = PDp N D is a t-ideal of D [22, Theorem 3.19 and
Lemma 3.17].

(4) Note that @ € QDp = QDp N PDp = QDpNP C QDpND =Q
by (1); hence @Dp = Q. Since Dp is a PVD by (2), @ = QDp is a strongly
prime ideal of Dp, and thus @ is a strongly prime ideal of D. Moreover,
QDp is a nonmaximal ideal of Dp, Dg = (Dp)gp, is a valuation domain [18,
Proposition 2.6].

(5) This follows because Spec(Dp) is linearly ordered by (2). d

The concept of UMT-domains was introduced by Houston and Zafrullah [20]
and has been studied by several authors (see, for example, [9, 12, 14, 20, 24]).
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Lemma 2.2. The following statements are equivalent for an integral domain
D.

(1) D is a UMT-domain.

(2) Dp is a UMT-domain and PDp is a t-ideal for each prime t-ideal P
of D.

(3) Dp has Priifer integral closure for each prime t-ideal P of D.

(4) Dp has Bezout integral closure for each prime t-ideal P of D.

Proof. (1) = (2) [14, Propositions 1.2 and 1.4]. (1) < (3) [14, Theorem 1.5].

(2) = (4) Replacing D with Dp and P with PDp, we assume that D is
quasi-local with maximal ideal P and P is a t-ideal. Let I be a nonzero finitely
generated ideal of D, and let f € D[X] such that Ay = I. Since D is a UMT-
domain and P is a t-ideal, there exists a polynomial g € ¢f(D)[X] such that
Agg = D [14, Lemma 3.4]; hence AsA, C (AfDA,D), = (AssD), = D [16,
Proposition 34.8]. Let R = D[AyA,]. Then R is a finitely generated D-module,
R C D, and (AfR)(AgR) = AfgR = R. Note that R has a finite number of
maximal ideals [16, Ex. 11, p.131] since R is a finitely generated D-module
and D is quasi-local. Hence A¢R is principal [16, Proposition 7.4], and thus
ID = A;D is principal.

Now, suppose that J = (ai,.. .,a,)D is a nonzero finitely generated ideal
of D. Since D is an overring of D there exists a 0 # d € D such that da; € D
fori=1,...,n;so (da,.. dan)D is a nonzero finitely generated ideal of D.

Hence d.] :_(dal, . dan)D, and thus J is principal by the previous paragraph.
Therefore, D is a Bezout domain.
(4) = (3) Clear. O

We next give some characterizations of PVDs which are also UMT-domains.

Theorem 2.3. The following statements are equivalent for a PVD (D, M).

) D is a UMT-domain.

2) D is a valuation domain.

3) D=(M: M).

4) Each overring of D is a UMT-domain.

5) There is an integral overring of D that is a UMT-domain.
6) D is a UMT-domain.

7) Each integrally closed overring of D is a valuation domain.
(8) Each overring of D is a PVD.

Proof. Recall that D is a PVD with maximal ideal M and V = (M : M) is a
valuation domain with maximal ideal M [18, Theorems 1.7 and 2.10].

(1) & (2) This is an immediate consequence of Lemma 2.2 since M is a
t-ideal of D and D is quasi-local.

(2) = (3) This follows directly from [16, Theorem 17.6] because D C V and
M is a maximal ideal of both D and V.

(2) = (4) and (7) Let R be an overring of D, and let R be the integral
closure of R. Then D C R; so R is a valuation domam [16, Theorem 17.6].

(1
(
(
(
(
(
(
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Thus R is a UMT-domain by Lemma 2.2. Moreover, if R is integrally closed,
then R = R, and hence R is a valuation domain.

(3) = (6); (4) = (5); (6) = (5); and (7) = (2) Clear.

(5) = (2) Let R be a UMT-domain such that D € R C D. Then R is quasi-
local since D is quasi-local and D is integral over R. Let @ be the maximal
ideal of R. If P is a prime ideal of R with P ¢ @, then PND ¢ M, and hence
Dpnp is a valuation domain by Lemma 2.1. Since Dpnp € Rp, we have that
Rp is a valuation domain [16, Theorem 17.6]. This also implies that Spec(R)
is linearly ordered under inclusion; so @ is a t-ideal of R [22, Theorem 3.19].
Thus D is a valuation domain by Lemma 2.2.

(3) < (8) [19, Proposition 2.7]. O

Corollary 2.4. Let (D, M) be a PVD, and let P C M be a prime ideal of D.

(1) D is ¢ UMT-domain if and only if D/P is a UMT-domain.
(2) (cf. [25, Proposition 2.5]) Each overring of D is a PVD if and only if
each overring of D/P is a PVD.

Proof. (1) Note that P = PDp, Dp = Dp\p is a valuation domain, P is a
strongly prime ideal of both D and D (cf. Lemma 2.1), and D/P is a PVD
[10, Lemma 4.5(v)]. Also, note that (D/P)p;p & Dp/PDp = Dp/P [16,
Proposition 5.8]; hence Dp/P (resp., D/P) can be considered as the quotient
field (resp., integral closure) of D/P. Moreover, since ij\p is a valuation
domain, we have that D is a valuation domain if and only if D/ P is a valuation
domain [10, Lemma 4.5(v)]. Thus by Theorem 2.3, D is a UMT-domain if and
only if D is a valuation domain, if and only if D/P is a valuation domain, if
and only if D/P is a UMT-domain.

(2) Since Dp is a valuation domain and P = PDp by Lemma 2.1, we have
that D is a PVD if and only if D/P is a PVD [10, Lemma 4.5(v)]. Thus the
proof is completed by (1) and Theorem 2.3. O

Let (D, M) be a PVD, and let V be a valuation overring of D such that
Spec(D) = Spec{V) [18, Theorem 2.10]. In [4, Theorem 14}, Badawi showed
that if D contains a nonzero finitely generated prime ideal, then D = (M : M)
is a valuation domain; hence every overring of D is a PVD by Theorem 2.3. Let
P be a nonzero finitely generated prime ideal D. Since Spec(D) = Spec(V), P
is also a finitely generated ideal of V', and hence P = aV for some 0 #£a € V.
Thus P is the maximal ideal of V, i.e., P = M. In [19], the authors also studied
PVDs whose maximal ideal is finitely generated.

Corollary 2.5. Let (D, M) be a PVD such that M is finitely generated, and
let { Py} be the set of prime ideals of D properly contained in M. Then
(1} UP, C M.
(2) D is a UMT-domain, and hence each overring of D is a PVD.
(3) An overring R of D has a prime ideal lying over M (if and) only if R
is integral over D.
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Proof. (1) Let M = (a1,...,an). Note that {F,} is linearly ordered under
inclusion (Lemmas 2.1(5)); so there exists an a; such that a; ¢ UP,. Thus
UP, ¢ M.

(2) Let P = UP,. Since {P,} is linearly ordered, P is a prime ideal of
D, and hence M/P is the unique nonzero prime ideal of D/P. Also, since
M, and hence M/P, is finitely generated, D/P is a Noetherian domain by
Cohen’s theorem, and hence D/P is a UMT-domain [20, Theorem 3.7]. Thus
D is a UMT-domain by Corollary 2.4(1) and each overring of D is a PVD by
Theorem 2.3.

(3) Note that D is a valuation domain by (2) and Theorem 2.3. Let R be
the integral closure of R, and let Q be a prime ideal of R such that @QND = M.
Since D C R, it follows that R is a valuation domain [16, Theorem 17.6]. Note
that M is the maximal ideal of D [18, Theorem 1.7] and M C @ C QRCR.
Hence D = R [16, Theorem 17.6], and thus R is integral over D. O

Corollary 2.6. Let (D, M) be a PVD, and let R an overring of D. If M is
finitely generated, then each prime ideal Q@ of R with QN D = M is finitely
generated.

Proof. Note that D C RC D = (M : M) by Corollary 2.5(3) and Theorem 2.3
and that M is the maximal ideal of (M : M). Hence Q = M, and thus Q is
certainly finitely generated. O

3. t-locally pseudo-valuation domains

Let D be an integral domain with ¢f(D) = K and D the integral closure D,
and N, = {f € D|X]|(Ay), = D}. Following [11], we say that D is a locally
pseudo-valuation domain (LPVD) if Dy is a PVD for each maximal ideal M
of D. In this section, we study when D[X]n, is an LPVD. To do this, we need
the concept of ¢t-locally PVD. We will call D a ¢-locally PVD (+-LPVD) if Dp
is a PVD for all maximal t-ideals P of D.

Lemma 3.1. An integral domain D is an LPVD if and only if D is o ¢t-LPVD
and each mazimal ideal of D is a t-ideal.

Proof. Let D be an LPVD, and let M be a maximal ideal of D. Then M Dy,
is a t-ideal by Lemma 2.1(3). Thus M = MDy N D is a t-ideal of D [22,
Lemma 3.17]. The converse is clear. 0

An overring R of D is said to be t-linked over D if for any nonzero finitely
generated ideal I of D, I™! = D implies (IR)™! = R; equivalently, if Q is a
prime ¢-ideal of R, then (Q N D), ¢ D [13, Proposition 2.1]. It is known that
R is t-linked over D if and only if R[X|y, N K = R [8, Lemma 3.2]. As in
[27], we say that an element u € K is w-integral over D if ul,, C I, for some
nonzero finitely generated ideal I of D. The w-integral closure of D is the set
D¥ = {&z € K|z is w-integral over D}. We know that DY is an integrally
closed domain; D € D C D¥ C K; DY is t-linked over D [9, Lemma 1.2];
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D¥ = D[X|n, N K [9, Theorem 1.3]; and if D is a UMT-domain, then D
is a PVMD [9, Theorem 2.6]. For more on the w-integral closure of integral
domains, see [9].

Lemma 3.2. Let D be o t-LPVD and P a nonzero prime ideal of D with
P, CD.

(1) P s a prime t-ideal of D.

(2) If P is not a mazimal t-ideal, then Dp is a valuation domain.

(3) DD\P = (Dw>D\P and DD\P is o PVD.

Proof. (1) and (2) Let @ be a maximal ¢-ideal of D such that P; C Q; then
Dg is a PVD and PDg is a proper prime ideal of Dg. Hence PDg, and thus
P =PDgnND, is at-ideal by Lemma 2.1(3) and [22, Lemma 3.17]. Moreover,
if P is not a maximal ¢-ideal, then PDg is not a maximal ideal of Dg, and
hence Dp = (Dg)pp,, is a valuation domain by Lemma 2.1(4).

(3) Note that Dp\ p is an integrally closed t-linked overring of D [13, Propo-
sition 2.9]; so D¥ C DD\p (ef. [9, Theorem 1.3]). Thus DD\p = (D¥)p\p-
Moreover, since D p\p is the integral closure of Dp and Dp is a PVD, we have
that Dp\p is a PVD [18, Theorem 1.7]. O

Lemma 3.3. Let D be ¢ t-LPVD.

(1) D is a UMT-domain if and only if DV is a PuMD. B
(2) If D is an LPVD, then D is a UMT-domain if and only if D is a Prifer
domain.

Proof. (1) Suppose that D% is a PuMD. Let P be a maximal ¢-ideal of D, and
let @ be a prime ideal of D% such that @ N D = P (cf. [9, Corollary 1.4(3)]).
Then (D) p\ p is the integral closure of Dp and (D™)py p is a PVD by Lemma
3.2(3). Note that (D¥)p\p = (D¥)q and Qp\p is a t-ideal of (D¥)p\p by
Lemma 2.1(3); s0 Q@ = Qp\p N DY is a t-ideal of D [22, Lemma 3.17]. Hence
(D™)p\p is a valuation domain (17, Theorem 5]. Thus D is a UMT-domain by
Lemma 2.2. The converse holds without the assumption that D is a t-LPVD
(see [9, Theorem 2.6]).

(2) Assume that D is a Priifer domain, and let P be a maximal ¢-ideal of
D. Then D D\ P, the integral closure of Dp, is a Priifer domain. Thus D is a
UMT-domain by Lemma 2.2, Conversely, assume that D is a UMT-domain.
Let () be a maximal ideal of D, and put P = QN D. Then P is a t-ideal
of D by Lemma 3.1, and thus D p\p is a Priifer domain by Lemma 2.2. So
Dqg = (Dp\p)gp,» is & valuation domain. Thus D is a Prifer domain. |

Recall that each integral overring of an LPVD is an LPVD [11, Proposi-
tion 2.6]. Our next result is the +-LPVD analog.

Proposition 3.4. Let D be a t-LPVD. If R is a t-linked overring of D such
that R C DY, then R 1s a t-LPVD.
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Proof. Let @Q be a maximal t-ideal of R, and put P = QN D. Then F, C D
since R is t-linked over D, and hence Dp is a PVD by Lemma 3.2(1). Note that
Dp C RD\p C (Dw)]_)\p == DD\P by Lemma 32(3), 50 RD\p is a PVD (Cf
(18, Theorem 1.7] or [11, Proposition 2.6]). Thus Rg = Rp\p isa PVD. U

Proposition 3.5. Let V = K + M be a valuation domain and R = D+ M,
where K 1s a field, M is the nonzero maximal ideal of V, and D is a proper
subring of K.
(1) R is a PVD if and only if D is a PVD with quotient field K or D is a
field.
(2) A prime ideal P of D is a mazimal t-ideal if and only if P+ M is a
mazimal t-ideal of R.
(3) R s at-LPVD if and only if either D is a t-LPVD with quotient field
K or D is a field.

Proof. (1) [10, Proposition 4.9].

(2) This follows from the fact that if I is a nonzero ideal of D, then I+ M is
an ideal of R, I is finitely generated if and only if I + M is finitely generated,
and (I + M), = I, + M [2, Proposition 2.4].

(3) (=) Let R be a t-LPVD, and assume that D is not a field. Let P be
a maximal t-ideal of D; then P + M is a maximal t-ideal of R by (2). Hence
Rpim = Dp+M [6, Theorem 2.1(g)] is a PVD; so Dp is a PVD with quotient
field K by (1). Thus D is a t-LPVD with quotient field K. (<) If D is a
field, then R is a PVD by (1), and hence R is a ¢-LPVD. So we assume that
D is a t-LPVD with quotient field K. Let @) be a maximal {-ideal of R; then
@ =P+ M [6, Theorem 2.1(c) and (d)], where P is a maximal t-ideal of D by
(2). Note that Rg = Dp + M and Dp is a PVD with quotient field K. Thus
Rg is a PVD by (1). i

Recall that D is a Mori domain if D satisfies the ascending chain condition
on integral divisorial ideals; equivalently, for each nonzero fractional ideal A of
D, there is a finitely generated subideal I of A such that A, = I,,. Clearly, a
Noetherian domain is a Mori domain. It is well known that if D is a Noetherian
PVD, then dim(D) < 1 [18, Proposition 3.2] and that if D is a PVD, then D
is a Mori domain if and only if M~! is a rank one DVR [5, Theorem 3.2].
Thus if D is a Mori PVD, then dim(D) < 1 (where dim(D) denotes the (Krull)
dimension of D).

Proposition 3.6. Let D be a t-LPVD which is not a field. If D is a Mor
domain, then each maximal t-ideal of D has height-one.

Proof. Let P be a maximal t-ideal of D; then Dp is a Mori domain [26, Corol-
lary 3} and a PVD. Hence htP? = dim(Dp) < 1 by the preceding statement,
and thus htP = 1. O

Let S = {f € D[X]|Af = D}; then S is a saturated multiplicative subset
of D[X]. The quotient ring D[X]s, denoted by D(X), is called the Nagata
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ring of D. Let Ny = {f € D[X]|(Ay), = D}; then N, is also a saturated
multiplicative subset of D[X] such that S C N,. Thus D[X]y, is an overring
of D(X). It is not difficult to show that D is a PuMD (resp., Prifer domain) if
and only if D[X]n, (resp., D(X)) is a Priifer domain [22, Theorem 3.7] (resp.,
[3, Theorem 4]).

The rest of this section is devoted to the study of the following question:
when does the ring D|X|n, become an LPVD ?

Lemma 3.7. Let D be a quasi-local domain and D(X) the Nagata ring of D.
Then D is a PVD and a UMT-domain if and only if D(X) is a PVD.

Proof. Let M be the maximal ideal of D and K = ¢f(D). Note that D(X) is
quasi-local with maximal ideal M(X) = M D(X) [16, Proposition 33.1].

(=) Let D be a PVD and a UMT-domain. Then D is a valuation domain
with maximal ideal M by Theorem 2.3, and hence D(X) is a valuation domain
with maximal ideal M(X) [16, Proposition 18.7]. Thus D(X) is a PVD [18,
Theorem 2.7]. (<) Suppose that D(X) is a PVD. Note that M (X) is a strongly
prime ideal of D(X) and M(X)N K = M (cf. [16, Proposition 33.1(4)]); so
M is a strongly prime ideal of D. Thus D is a PVD. Next, we show that
I is a UMT-domain. Assume to the contrary that D is not a UMT-domain.
Note that M, and hence M[X], is-a t-ideal [22, Corollary 2.3}; so there is a
polynomial f € K[X]\ D[X] such that Q; = fFK[X]|ND|X] C M[X] and Qy is
a prime ideal of D[X]. It is clear that (Qf)s € M[X]s = M(X); hence (Qy)s
is a strongly prime ideal of D(X) by Lemma 2.1(4). Let 0 # a € (Af)~!; then
af € Qs C(Qy)s. Since f € D[X], we have f € D(X); hence a € (Q5)sNK C
D. Thus a € Q¢ N D = (0), a contradiction. 0

We next give the main result of this paper.

Theorem 3.8. The following statements are equivalent for an integral domain
D.

(1) D is at-LPVD and D is a UMT-domain.

(2) D is at-LPVD and D" is a PoMD.

(3) For each mazimal t-ideal P of D, each overring of Dp is « PVD.

(4) For each mazimal t-ideal P of D, each overring of Dp is an LPVD.

(5) Fach t-linked overring R of D is a t-LPVD and if Q is a prime ideal

of R with (QN D), C D, then Q is a t-ideal.
6) D[X1is at-LPVD.
() D[X]nN, is an LPVD, where N, = {f € D|X]|(Af)v = D}.

(8) D[X])n, is a t-LPVD.

(9) Each overring of D[X|n, ts an LPVD.

Proof. (1) & (2) Lemma 3.3.
(1) = (3) Let P be a maximal ¢-ideal of D. Then Dp is a PVD and a UMT-
domain by Lemma 2.2, and thus each overring of Dp is a PVD by Theorem 2.3.
(3) = (5) Let @ be a prime ideal of R such that (QND); C D, and let P be
a maximal t-ideal of D containing (Q N D);. Then Dp € Dgnp € Rg; so Rq
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is a PVD. Hence QRg is a t-ideal by Lemma 2.1(3), and thus Q = QRg N R
is a t-ideal of R [22, Lemma 3.17]. Moreover, if @' is a maximal t-ideal of R,
then since R is t-linked over D, we have (@' N D), C D. Thus R¢ is a PVD.

(5) = (4) Let P be a maximal t-ideal of D, and let R be an overring of
Dp. First, note that Dp is t-linked over D and PDp is a t-ideal of Dp by (5);
hence Dp is a PVD. Also, Dp being t-linked over D implies that R is t-linked
over D. Hence R is a t-LPVD. Let Q be a maximal ideal of R. Then Q N Dp
is a t-ideal of Dp (cf. Lemma 2.1(3)), and hence Q N D is a t-ideal of D [22,
Lemma 3.17]. Hence @ is a t-ideal of R by (5), and thus Rq is a PVD.

(4) = (1) Clearly, D is a t-LPVD. Let P be a prime t-ideal of D. If P is not
a maximal t-ideal, then Dp is a valuation domain by Lemma 3.2(2). Next, if
P is a maximal t-ideal, then the integral closure of Dp is a Priifer domain by
{4) and [11, Theorem 2.9]. Thus D is a UMT-domain by Lemma 2.2.

(1) = (6) Assume that D is a t-LPVD and a UMT-domain. Let Q) be a
maximal t-ideal of D[X]; then either QND = (0) or Q = (QN.D)[X] with QND
maximal t-ideal of D [14, Proposition 2.2]. If @ N D = (0), then D[X]g is a
valuation domain. Next, assume that Q = (Q N D)[X], and note that Dgnp is
a PVD and a UMT-domain by Lemma 2.2. Thus D(X]q = (Donp(X1)@gap =
Donp(X), the Nagata ring of Dgnp, is an PVD by Lemma 3.7.

(6) = {7) Suppose that D[X] is a --LPVD. Let @ be a maximal ideal of
D[X]n,; then Q@ = P[X]n,, where P is a maximal t-ideal of D [22, Proposi-
tion 2.1). Note that P[X] is a maximal t-ideal of D[X] {14, Lemma 2.1(4)].
Thus (D[X]n,)q = (D[X]n,)p(x)y, = D[X]px) is a PVD.

(7} = (1) Let P be a maximal t-ideal of D. Then P[X]x, is a maximal
ideal of D[X], (22, Proposition 2.1]. Hence (D[X]n,)pix)y, = DI Xlpix] =
Dp(X), the Nagata ring of Dp, is a PVD. Thus Dp is a PVD and a UMT-
. domain by Lemma 3.7. Moreover, since PDp is a t-ideal (Lemma 2.1(3)), D
is & UMT-domain by Lemma 2.2.

(7} & (8) This follows from Lemma 3.1 because each maximal ideal of
D[X]w, is a t-ideal (cf. |22, Propositions 2.1 and 2.2]).

(7} =+ (9) By the equivalence of (1) and (7), D is a UMT-domain, and hence
the integral closure of D[X ]y, is a Priifer domain [14, Theorem 2.5]. Thus each
overring of D[X]y, is an LPVD [11, Theorem 2.9].

(9) = (7) Clear. O

Note that D is an LPVD if and only if D is a ¢-LPVD and each maximal
ideal of D is a t-ideal by Lemma 3.1. Thus by Lemma 3.3(2) and Theorem 3.8,
we have

Corollary 3.9. The following statements are equivalent for an integral domain
D.

(1) D is an LPVD and D is a UMT-domain.
{(2) D is an LPVD and D is a Prifer domain.
(3) The Nagata ring D(X) of D is an LPVD.
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(4) Each overring of D(X) is an LPVD.

It is known that if D is an LPVD, then D is a Priifer domain if and only if
each overring of D is an LPVD [11, Theorem 2.9]. As the t-operation analog,
we proved that if the w-integral closure of a t-LPVD D is a PuMD, then
each t-linked overring of D is a -LPVD (see the equivalence of (2) and (5)
of Theorem 3.8). But, we do not know whether the converse holds. This is
equivalent to whether the second half of (5) in Theorem 3.8 is superfluous.
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ments and suggestions.
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