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BEST PROXIMITY PAIRS AND NASH EQUILIBRIUM PAIRS

Won Kvu KiMm AND SANGHO Kum

ABSTRACT. Main purpose of this paper is to combine the optimal form
of Fan’s best approximation theorem and Nash’s equilibrium existence
theorem into a single existence theorem simultaneously. For this, we first
prove a general best proximity pair theorem which includes a number
of known best proximity theorems. Next, we will introduce a new equi-
librium concept for a generalized Nash game with normal form, and as
applications, we will prove new existence theorems of Nash equilibrium
pairs for generalized Nash games with normal form.

1. Introduction

In 1969, Fan proved the well-known best approximation theorem which gen-
eralizes the Tychonoff fixed point theorem as follows:

Theorem A ([8]). If K is a non-empty compact convex subset of a locally
conver Hausdorff topological vector space E with a continuous seminorm p,
and f : K — FE is a single valued continuous function, then there ezists an
element & € K such that

p(f(Z) - Z) = dp(f(2), K) := inf{p(f(T) —y) | y € K}

Since then, a number of generalizations of this theorem have been obtained
in various directions by several authors (e.g., see 2, 3, 5, 13, 18-23]). Indeed,
Reich [18] has shown that even if K is a non-empty approximately p-compact
convex subset of a locally convex Hausdorff topological vector space £ with a
relatively compact image f(K), then the same conclusion holds. Later, Segal
and Singh [21] have extended this result to convex valued continuous multifunc-
tions. Even though a best approximation theorem guarantees the existence of
an approximate solution, it is contemplated to find an approximate solution
which is optimal. In this direction, Srinivasan and Veeramani [23] have proved
the general forms of existence theorems for best proximity pairs, and Kim and
Lee [12] prove two general existence theorems of best proximity pairs in a recent
paper.
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On the other hand, in 1951, Nash established the pioneering result on the
existence of equilibrium for generalized games as follows:

Theorem B ([15]). Let I be a finite set of players. Assume that for alli € I,
(a) the set X; C R¥ is non-empty compact and conves
(b) the function f;: X := IL;c1 X; — R is continuous on X;
(c) the function y; — fi(z1,...,%Ti—1,Yi, Tit1,...,Tn) is concave on X;.
Then there exists a Nash equilibrium & = (Z;);er € X such that for each i € I,

fi(jl,...,ii,...,:fn) zfi(a“;l,...,xi,...,:in) for all xz; € X;.

Next, in 1977, Friedman [9] established a generalization of Theorem B us-
ing the quasi-concavity assumption on every payoff function. Since then, the
classical results of Nash [14, 15|, Debreu [4] and Friedman [9] have served
as basic references for the existence of Nash equilibrium for non-cooperative
generalized games. In all of them, convexity of strategy spaces, continuity
and concavity/quasi-concavity of the payoff functions were assumed. Till now,
there have been a number of generalizations, and also many applications of
those theorems have been found in several areas, e.g., see [1, 9] and references
therein.

In this paper, we will combine the optimal form of Theorem A and The-
orem B into a single existence theorem simultaneously. For this purpose, we
first prove a general best proximity pair theorem which generalizes the theo-
rems due to Srinivasan and Veeramani [23, 24], Kim and Lee [12], and others.
Next, we will introduce a new concept of Nash equilibrium pair in a generalized
Nash game with normal form, and as applications of the best proximity pair
theorem, we will prove new existence theorems of Nash equilibrium pairs for
generalized Nash games with normal form which includes Theorem B and its
generalizations due to Nikaido and Isoda [16], Kim and Lee [11], and others.

2. Preliminaries

We begin with some notations and definitions. Let I be any (possibly in-
finite) index set. For each ¢ € I, let X; be a non-empty topological space
and denote X; := WienX;, and X = e/ Xy = Xs x X;. If z =
(T1,--+3Tn,...) € X, we shall write ; = (z1,...,Zi—1,Tit1,.--,Tn,-..) € X;,
and if z; € X; and z; € X;, we shall use the notation z = (x;,;) =
(.’L‘l,...,Jii_l,wi,l‘i_._l,...,In,...) € X.

Let I be a finite (or an infinite) index set. For each ¢ € I, let X; and Y;
be non-empty subsets of a normed linear space E with a norm || - ||, and the
metric d(z,y) for E is induced by the norm, i.e., d(z,y) = ||z — y||. Then we
can use the following notations as in [12, 24]: for each i,j € I,

d(X“Y]) = mf{d(z,y) | z€Xiy€ 1/J}7
X7 :={z€X;| foreach j €I, Jy; €Y, such that d(z,y;) = d(X,,Y;) };
Y :={yeY;| foreach j €I, 3z; € X, such that d(z;,y) = d(X;,Y:) }.
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And we denote X° := ILie; X? and Y° := I, Y2 If X; = {z}, then
d(X;,Y;) is written as d(z,Y;). Also, if X; = {z} and Y; = {y}, then d(z,y)
denotes d(X;,Y;) which is precisely ||z — y].

If X; and Y; are non-empty compact and convex subsets of a normed linear
space E, then when |I| = 1, we can see that X/ and Y;° are both non-empty
compact and convex; on the other hand, when [I| > 1, it is easy to see that
X? or Y may be an empty set in general, In fact, when E = R? with the
Euclidean metric d and X; = X, = {z € E | d(z,(0,0)) < 1};

Yi={z€E|d(z,(30) <1}, Ya={reE|d(z(0,3) <1},

then each Y is non-empty compact and convex but X7 is an empty set.

For each i € I, let X; and Y; be two non-empty subsets of a normed linear
space F, and let T} : X = I/ X; — 2% be a multifunction. Then the pair
(%;,Ti(Z)) € X; x Y; is called the best prozimity pair for T; if d(z;, T;(Z)) =
d(X;,Y;) for each ¢ € I. Then the best proximity pair theorem seeks an
appropriate solution # € X which is optimal. In fact, the best proximity pair
theorem analyzes the conditions which the problem of minimizing the real-
valued function z — d{(z;, T;(x)) has a simultaneous solution for each i € 1. In
the best proximity pair, whenever X; = Y; for each i € I, then 7 is actually the
fixed point for the multifunction T' = W Ty, ie., € T(Z). Still there have
been a number of generalized theorerms on the existence of best proximity pairs
which can be regarded as the optimal forms of Theorem A by several authors,
e.g., see [2, 12, 19, 20, 23].

Let X be a non-empty subset of a normed linear space E, and consider the
metric projection map Py : E — 2% defined by for each z € E,

Px(z) ={z e X |||z —z|| =d(z,z) = d(z, X)}.
Then, it is well-known that if X is non-empty compact and convex, then Px (x)
is a non-empty compact and convex subset of X, and the multifunction Px is
upper semicontinuous in X. For the properties of the metric projection, see
[18-20).

Next, we recall the following definition due to Kim and Lee which generalizes
the concavity condition:

Definition 1 ([11]). Let X be a non-empty topological space, Y an arbitrary
set. Then f: X xY — R is called C-concave on X if for every n 2 2, whenever
n points x1,...,Z, € X are arbitrarily given, there exists a continuous function

¢r 1 [0,1]™ — X such that
flonA, - 20, 9) = M f(zn,y) + -+ Anf(@n,y)
forall X, €[0,1], i=1,...,n, with >0 ;A =1, and forall y€Y.
Remark. As remarked in [11], the concavity clearly implies the C-concavity by
letting ¢n (A1, ..., An) == Aiz1+- -+ AT, whenever z1,...,z, € X are given;

however, we do not know the implications between the quasi-concavity and the
C-concavity.
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Also recall that a topological space X is said to have the fized point property
(or is a fized point space) [5] if every continuous mapping f : X — X has
a fixed point in X. Clearly this property is topologically invariant, and note
that the product of two fixed point spaces need not be a fixed point space. In
contrast with finite products, an infinite product of non-empty compact fixed
point spaces will be a fixed point space whenever every finite product of those
spaces is a fixed point space, e.g. see [5, p.174].

A multifunction T : X — 2Y from a topological space X to a Hausdorff
topological vector space Y is said to be a Kakutani multifunction [13] if the
following conditions are satisfied: (i) 7T is upper semicontinuous; (ii) either T'()
is singleton for each z € X or for each z € X, T(z) is a non-empty compact
convex subset of Y. A multifunction S : X — 2Y is said to be a Kakutani
factorizable multifunction [13] if it can be expressed as a composition of finitely
many Kakutani multifunctions, i.e., S = Ty 0Ty 00T}, and each T; is a
Kakutani factorizable multifunction.

3. Existence of best proximity pairs

The following Lassonde fixed point theorem for Kakutani factorizable mul-
tifunctions is a generalization of the well-known Fan-Glicksberg’s fixed point
theorem, and it is essential in proving the existence of best proximity pairs:

Theorem 1 ([13]). If X is a non-empty compact and convex subset of a lo-
cally convez Hausdorff topological vector space, then any Kakutani factorizable
multifunction T : X — 2% has a fized point, i.e., there exists a point T € X
such that € T(Z).

Now we will prove a new existence theorem for the best proximity pairs as
follow:

Theorem 2. Let I be an (possibly infinite) indexr set and for each i € I, let
X; and Y; be non-empty compact and conver subsets of a normed linear space
E, and let A; : X = ;1 X; — 2¥+ be an upper semicontinuous multifunction
in X such that A;(x) is a non-empty closed and convex subset of Y; for each
x € X. Assume that for each i € I,

(*) Ax)NY2 £0 forall z € X.

Then there ezists a point T = (Z;)ic1 € X of best prozimity pairs such that for
eachi€ I, d(fl,Al(i‘)) = d(Xi, Y;)

Proof. For each i € I, since X; and Y; are non-empty compact and convex, it
is easy to prove that Y;° is a non-empty compact and convex subset of Y;. In
fact, by the assumption (x)}, Y;? is non-empty. Let ¢ € I be arbitrarily fixed.

1
In order to show Y} is convex, let y1,y2 € Y;? be given. Then, for each j € I,

there exist «},2% € X; such that d(z?,yk) = d(X;,Y;) for k = 1,2. For any

A € (0,1), we let § := Ay + (1 — A)yz, and 2; := Azj + (1 — M)z3. Since X;
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and Y; are convex, &; € X; and ¢ € Y;. Then for each j € I, we have
d(25,9) = 100 + (1= Maf) — Qo + (1= Vo)l
= 1IMz; = 3) + (1= M){aF - o)
<Al = will+ 1 = Nlle] - vall = d(X;, Y)

so that § € Y, and hence Y}° is convex. Similarly, the convexity for X?

can be proved. Next, in order to show that Y is a closed subset of Y, let
(yn)nen be a sequence in Y;? which converges to § € Y;. For each j € I, let
k; = d(X;,Y;). Then, since y,, € Y;? for each n € N, there exists 27 € X such
that [|27 —yn|| = k; for each j € I. Since {7} C X; and X; is compact, there
exists a convergent subsequence (z7*) of (z}) which converges to Z; € Xj.
Then we can see that

k]‘ < HZJ -4l = ”&7 - x?k + w;’* = Yne T Ynyp — gl
<& — 2P+ 127 = ynpll + 1|y, — F1]-

Since ||Z; —27*|| — 0 and  |jyn, — gl — 0, and ||27* — yn, || = k;, we have

[|Z; — G|l = k; so that § € Y,?. Therefore, Y,° is a closed subset of ¥; so that
Y? =YY is a non-empty closed and convex subset of Y = Il Y;.

Also, it is known that for each i € I, the metric projection map Px, : £ —
2% is upper semicontinuous in E such that Px.(z) is a non-empty compact
and convex subset of X; for each z € E (e.g., see [18, 24]).

For each ¢ € I, we now define a multifunction A’ : X — 2% by

Al(z) == Aj(x) NY? foreach z € X =i X;.

Then, by the assumptions, each AJ(z) is non-empty compact and convex in
Y?, and A} is upper semicontinuous in X.
Finally, we introduce two multifunctions A’ : X — 2¥°, defined by

Al(z) =Te Al(z) for each z = (x;)ier € Wier X3
and  P§ I Y — 2MierXs  defined by
Py (y) := g1 Px, (y;)  for each y = (yi)ier € ierYs.

Since A} and Px, are upper semicontinuous with compact and convex val-
ues for each ¢ € I, by Lemma 3 in [6], A’ and P are both upper semicon-
tinuous such that each A’(z) is non-empty compact and convex in Y°, and
each P (y) is non-empty compact and convex in X. Hence, A’ and Py are
Kakutani multifunctions so that the composition map Py o A’ : X — 2%
is a Kakutani factorizable multifunction. Therefore, by Theorem 1, there
exists a fixed point Z = (%;);e; € X such that Z € (Py o A’)(Z). Then,
(Zi)ier € Py (A'((Z;)ier)) so that there exists an (§i)ier € WierYy” such that
(Ti)ier € A'(Z) = Ties (Ai(2)NY?) and 2; € Px, (§:) for each ¢ € I. Since each
Ji is an element in Y,?, there exists an } € X, such that d(z},7;) = d(X,,Y;)
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for each ¢ € I. Therefore, for each 7 € I, we have
d(Z:, Ai(Z)) < d(Zi,7:) = d(Xs, %) < d(zi,7s) = d(X3,Y3)
so that d(Z;, A;(Z)) = d(X;,Y;) which completes the proof. a

Remarks. (i) The assumptions of Theorem 2 is different from those of Theo-
rem 1 and 2 in [12], and the conclusions have slight different forms. However,
Theorem 2 can be regarded as an infinite generalization of Theorem 1 and 2 in
[12].

(ii) If X; =Y; and A; : X — 2% for each 4,5 € I, then the assumption that
“Ai(z)NY° # 17 is automatically satisfied. In fact, Y;° = X;. Similarly, in case
Y; = E for each i € I, the assumption that “A;(z) NY? # (7 is automatically
satisfied and Y, = E. In those cases, the conclusion means that 7 is a fixed
point for Il;crA;, which implies the Bohnenblust-Karlin fixed point theorem
[5].

(ii) When |I| = 1, Theorem 2 generalizes Theorem 3.4 of Srinivasan-
Veeramani {24] by relaxing the condition “A(X°) C Y°” into the weaker con-
dition “A(z)NY° # @ foreach z € X.

Next we give a simple example which is suitable for Theorem 2, but the pre-
vious theorems due to Srinivasan-Veeramani [23, 24], Kim-Lee [12] and others
can not be applied:

Example 1. Let E = R? with the Euclidean metric d, and for each 1 = 1, 2,
let

Xi={(z,0) |0 <z <2}

Y= {(z,y) | 0<z <2, 1<y<2}.

Andlet X := X;x X5 andY :=Y) xY5. Then it is easy to see that X? = X, and
Y? ={(y,1)|0<y <2} and d(X;,Y;) = 1 foreachi = 1,2. Foreachi =1,2,
let A; : X — 2¥ be a multifunction defined by for each ((z1,0), (z2,0)) € X,

A1((21,0), (22,0)) :={(2—z1,9) |1 <y < |z1 — 1|+ 1}
A2((21,0), (22,0)) == {(z2,9) |1 <y < Jwg — 1 + 1}

Then, it is clear that each A;((x1,0), (z2,0)) is a non-empty closed and convex
subset of Y;. Also, it is easy to see that A; is upper semicontinuous in X. Then,
for each ((z1,0), (z2,0)) € X° = X, it is easy to see that A;((z1,0), (z2,0)) N
YP? ={(2—-121,1)} # 0 and Ax({z1,0), (z2,0)) N Yy = {(z2,1)} # 0; however,
Ai((%1,0), (2,0)) € Y for some ((z1,0), (z2,0)) € X, and X = X3 x Xs is a
product set so that the theorems due to Srinivasan-Veeramani [23, 24], Kim-
Lee [12] can not be applied. However, all the hypotheses of Theorem 2 are
satisfied so that there exists a point & = ((1,0),(1,0)) € X of best proximity
pairs such that d((1,0), A;(Z)) = d(X;,Y;) =1 for each i = 1,2.
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4. Existence of Nash equilibrium pairs

We first recall the equilibrium concept in the game theory due to Nash
[15]. Let I = {1,...,n} be a set of players. A non-cooperative Nash game
(or n-person game) T' = (X;; fi)ier of normal form is an ordered 2n-tuple
(X1,...,Xn; f1,. ., fn), where for each player ¢ € I, the non-empty set X;
is the player’s pure strategy space, and f; : X = II"_; X; — R is the player’s
payoff function. The set X, joint strategy space, is the Cartesian product of the
individual strategy sets, and an element of X; is called a strategy. A strategy
n-tuple (Z1,...,%Z,) € X is called a Nash equilibrium for T if the following

system of inequalities holds: for each i =1,...,n,

fi(i’i,f:b-) > fi(l'i,f%) for all z; € X;,.

This pioneering concept on the existence of equilibrium for a non-cooperative
n-person game was established by Nash in 1951, and is regraded as the basic
result in equilibrium theories. Here it should be noted that it is possible to
generalize that the set of players I may be infinite in the model of a game.

In recent papers [23, 24], Srinivasan and Veeramani considered a general eco-
nomic situation which is motivated to introduce the equilibrium pair concept
in a constrained generalized games as follow. Suppose that goods are man-
ufactured and sold in different locations. Each location (or player) can be a
manufacturing as well as selling unit. It is agreed that the ultimate place where
the goods get sold would be determining the payoff for the goods. Let there be
n such locations. For each location, two strategies X; and Y; are associated,
one to that of manufacturing unit and other to that of selling unit. Knowing
the manufacturing strategy «; € X; := e (3 Xy of all other locations, the
choice of selling strategy at the ith location is restricted to A;(z) C Y;. Also, let
the payoff function f; : ¥ =II? ;¥; — R at the ith location be given such that
fi is the real-valued function at the given strategy y € Y which can maximize
the payoff associated with the ith location. In fact, the preferred strategies
are strongly dependent to the consumer’s behavior at the ith location. Under
those settings, they investigated the system of multifunctions 4; : X — 2%
and f;: Y — R for each i € I. Moreover, the cost involved in the transporta-
tion of goods to different places should also be taken into account. In fact,
the transporting cost from z; to A;(z) can be considered as d(z;, A;(z)), and
so it is very reasonable that its payoff function f;(y:,y;) on A;(z) can have a
maximum whenever d(x;, A;(z)) has a minimum value d(X;,Y;). In these sit-
uations, one can not expect an equilibrium for the Nash game of normal form
by applying the previous results in [3, 4, 9, 11, 14-17] because the strategy sets
X; and Y; may be different in general.

In [23, 24], as applications of their best proximity theorems, Srinivasan and
Veeramani proved existence theorems of equilibrium pair for constrained gen-
eralized games by using the conditions (A) and (B), respectively. And, as re-
marked, the condition (c) of Definition 4.3 in [23] has less economic information
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for constrained generalized games. This is the motivation of our equilibrium
pair concept for a generalized Nash games, and also we shall prove an exis-
tence theorem of equilibrium pair for constrained generalized games without
assuming the conditions (A) in [24] nor (B) in [23].

In this section, as an application of our best proximity pair theorem (Theo-
rem 2), we shall prove an existence theorem of equilibrium pair for a generalized
Nash games. Now we will introduce a new concept of equilibrium pairs in gen-
eralized Nash games as follows:

Definition 2. Let I be a finite or an infinite set of players or locations. For
each ¢ € I, let X; be a non-empty set of manufacturing commodities, and Y;
be a non-empty set of selling commodities. A non-cooperative generalized Nash
game I' = (X;,Y;; A;, fi)icr of normal form is defined as a family of ordered
quadruples (X;,Y;; A;, f;) where X; and Y; are non-empty subsets of a normed
linear space E, and A; : X = ITje1 X; — 2% is a constraint correspondence,
and f; : Y =1I7,Y; — R is the player’s payoff function. A Nash equilibrium
pair for T is a pair of points (Z,7) = ((Zi)ier, (#i)ier) € X x Y such that for
eachi e I,
¥ € A;(z) with d(Z;,7) = d(3;, Ai(Z)) = d(X,,Y;), and
fi(@i,9;) 2 filyi, ;) for all y; € Ai(zi).

In particular, when I = {1,...,n}, we may call T a generalized n-person game
of normal form.

Remarks. (i) The transporting cost conditions ||z — ;|| = d(X,Y;) in Theo-
rem 4.5 in 23] and ||z — y|| = d(X,Y) in Definition 4.3 in [24] have reasonable
economic meanings in their settings, and it should be noted that our condition
is related with the Definition 4.3 in [24] as

llx —y|| =d(X,)Y) <= ||z; — y]| = d(X;,Y;) for each i€ I.

(ii) When X; =Y; and A;(z) = X; for each i € I and z € X in Definition 2,
then the Nash equilibrium pair can be reduced to the standard definitions of
equilibrium in the game theory due to Nash [14, 15], Debreu [4] or Friedman
[9], and so the Nash game I' = (X;,; fi)ics can be considered as a subgame
of the generalized Nash game T" = (X, Y;; A;, f:)icsr of normal form. For more
economic meanings and interpretations, see [3, 9, 14-17].

In [17], in order to obtain a Nash equilibrium for a game I, Nikaido and
Isoda define the total sum of payoff functions H : X x X — R associated with
the non-cooperative game I' = (X, ; fi):cs, as follows:

n
H(z,y) = Zfi(yla---:yi—l,xi,yi-i—l;--'ayn)
i=1

for every x = (z1,...,2n),y = (Y1,-..,yn) € X =1L, X;.
Here we note that if for each ¢ € I, the function y; — f;(y;,z;) is concave as
in Theorem B, then the function x — H(z,y) is concave; and so it is C-concave.
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As mentioned before, we can generalize the total sum of payoff functions for
the infinite generalized Nash game I'. For this, we shall need the following.
Let I be an infinite set of players, and let I' = (X;,Y;; As, fi)ier be a non-
cooperative generalized Nash game of normal form. Foreachi € I, f; : Y x
Y; — R is said to be unconditionally summable if for each z; € Y; and y; € Y;,
any rearrangement 3 .. ; f;(2;,y;) of the infinite sum >, ; fi(2i,3;) converges
to the same real value. Note that if I" = (X;; f;)ses s a finite Nash game, then

each f; is automatically unconditionally summable.

Using the unconditionally summablity, let us define the total sum of payoft
functions H : Y x Y — R associated with the infinite generalized Nash game
I'= (Xi,Y;‘; Ai, fi)ie[ as follows:

H(zy) = Zfi(zi,y;) for each ¥y = (yihier, 2 = (2i)icr €Y.
iel
The following is essential in proving the existence of generalized Nash equi-
librium:

Lemma 1. Let I be an infinite set of players and let I' = (X;; fiJier be a non-
cooperative Nash game of normal form where f; is wnconditionally summable
for each i € 1. If there exists a point T € X = ;1 X; with H(z,%) > H(z, %)
for any x € X, then T is a Nash equilibrium for T.

Proof. For each i € I and for any x = (z;,%;) € X, z; € X;, by substitution,
we can see that
fi(fi,Ci%) > fg(l‘i,ig) for all z; € X;

so that Z is a Nash equilibrium. U

We shall need the following which is an infinite generalization of Theorem 1
in [11] where their proof can be worked without any changes:

Lemma 2 ([11]). Let I be an infinite set of players, and let T' = (X5; fi)ier be
o non-cooperative Nash game of normal form. For eachi €I, f;: X;x X; — R
s unconditionally summable and satisfies the following:

(i) the set X = X; x X; is non-empty compact and has the fived-point
property;

(i) the function H(z,y) is continuous on X x X;

(ili) the function x — H(z,y) is C-concave on X.
Then T has at least one Nash equilibrium.

Remark. As remarked in {11], Lemma 2 generalizes the previous equilibrium
existence theorems due to Nash [17] and Nikaido and Isoda [16] in several
aspects.

As an application of Theorem 2, we will prove the existence of Nash equilib-
rium pairs for a generalized Nash game with infinite set of players as follows:
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Theorem 3. Let I be an infinite set of players and let T = (X;,Yi; Ay, fi)ier
be a generalized Nash game of normal form. For each i € I, the payoff function
fi 1Y =Y; xY; = R is unconditionally summable and assume the following
conditions:

(1) X; and Y; are non-empty compact and convex subsets of a normed linear
space E;

(2) A; : X = erX; — 2% is an upper semicontinuous correspondence
such that each A;(z) is a non-empty closed and conver subset of Y;, and satisfies
the condition (x) in Theorem 2;

(3) the payoff function f; 1 Y; x Y; — R is continuous;

(4) the function y; — fi(yi, ;) is concave.

Then there exists an equilibrium pair (Z,9) = ((Z:)ier, @i)ier) € X XY for T,
i.e., for eachi € I, §; € A;(%) such that d(z;, A;(Z)) = d(X;,Y;) and
)

[i@i 7)) = folyi, ;) for all y; € Ay(Z

Proof. For each i € I, since A; satisfies the whole assumptions of Theorem 2,
there exists a point Z = (Z;);e; € X of best proximity pairs, i.e., for eachi € I,
{z;} x Ai(Z) C X, x Y; such that d(Z;, Ai(Z)) = d(X;,Y:). It remains to show
the existence of Nash equilibrium on the constraint set ;7 A;(Z). Since Ai(Z)
is a non-empty closed convex subset of Y;, we can now restrict the generalized
Nash game I' = (X;, Yi; Ay, fi)ier to the Nash subgame IV = (A4;(Z); fi)iec1, and
also restrict the domain of the total sum of payoff functions H on A x A where
A := ILicrAi(Z). Then the whole assumptions of Lemma 2 are satisfied so
that there exists a Nash equilibrium (¥;)icr € IicrAi(Z) for the Nash subgame
IV = (Ai(Z); fi)ier, i-e., for each ¢ € I,

i@ §) > filyi,5;) forall y; € Ai(T).

Therefore, we can obtain an equilibrium pair (Z,7) = ((Z:)ier, (Fi)ic 1) €X x
A C X xY for the generalized Nash game I'. This completes the proof. O

Remark. In Theorem 3, we can relax the assumptions (3) and (4) into the
following weaker assumptions without affecting the conclusion:
(3') the total sum of payoff functions H : Y x Y — R, defined by

H(z,y) =Y _ fi(z,5;) for each y = (y)ier, (2i)ier €Y,
i€l
satisfies the following conditions
(i) the function (z,y) — H(z,y) is continuous on ¥ x ¥
(ii) the function z — H(z,y) is C-concave on Y.

In Theorem 3, when X; = Y; and A;(z) = X; for each ¢ € I and for all
x € X where each X; is assumed to be contained in the Euclidean space R",
we can obtain the infinite generalization of the existence of Nash equilibrium
(i.e., Theorem B):
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Corollary 1. Let I be an infinite set of players and I' = (X;; fi)ic1 be a non-
cooperative Nash game where each f; is unconditionally summable. Assume
that for each i eI,

(a) the set X; C R¥ is non-empty compact and conves;

(b) the function f; is continuous;

(c) the function y; — fi(yi,x;) is concave.
Then there exists at least one Nash equilibrium for T.

Here we note that the relations between the constraint multifunction A; and
the payoff function f; on A;(z). In real market economies, whenever ith player
can minimize his/her transporting cost from z; to A;(z), it is very natural that
its payoff function f;(y;,y;) can be maximizable. In fact, if y; € A;(z) with
d(zi,y:) > d(zi, Ai(z)) = d(X,,Y;), then it is plausible that fi|,(;) can not
attain a maximum at y;. Therefore, the following compatibility assumption on
the relation between A; and f; is reasonable in the generalized Nash game with
normal form: for eachi €1,

()

If fila,(z) attains a maximum at y; in A;(z), then d(x;,y;) = d(z;, A;(x)).

Adding the above assumption (7) in Theorem 3, we can obtain the existence
of Nash equilibrium pairs for a generalized Nash game I" as follows:

Theorem 4. Let I be an infinite set of players and let T = (X;,Y:; As, fi)ier
be a generalized Nash game with normal form. For each i € I, the payoff
function f; : Yi xY; — R is unconditionally summable and assume the following
conditions:

(1) X; and Y; are non-empty compact and convexr subsets of a normed
linear space E;

(2) A : X =1L X; — 20 is an upper semicontinuous correspondence
such that each A;(z) is a non-empty closed and convexr subset of Y;,
and satisfies the condition (*) in Theorem 2 and the condition (});

(3) the total sum of payoff functions H : Y xY — R satisfies the following
conditions

(i) the function (z,y) — H(z,y) is continuous on'Y X Y
(ii) the function z — H(z,y) is C-concave on Y.
Then there exists a Nash equilibrivm pair (Z,9) = ((Z:)ie1, (§i)ie1) € X XY for
T, e, for eachi € I, y; € Ai(Z) such that d(Z,,9;) = d(Z;, Ai(Z)) = d(X;,Y)
and
fi@i:93) 2 fiys, 5;)  for all yi € Ai().

Proof. By the condition (}), we can obtain that the equilibrium pair (Z,%) €
X XY in the conclusion of Theorem 3 is actually the Nash equilibrium pair for
I. O

Remark. As already mentioned, the condition (1) can be reformulated as the
contrapositive form:
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() ¥ d(zi,y:) > d(xs, Ai(z)) for some y; € A;i(z), then fi|4,(s) can not
attain a maximum at y; in A;(x).
Finally, we shall give an example of a generalized 2-person game which is

suitable for Theorem 4, but the previous equilibrium existence theorems in
[14-17, 23, 24] can not be applied:

Example 2. Let I' = (X;,Y;; A, fi)i=1,2 be a generalized 2-person game such
that E = R? with the Euclidean metric d, and for each i = 1, 2,
X; ={(z,0) | 0 <z <2};
Yii={(z,y) |0<z <2, 1<y<3}
Andlet X := X; x X5 and Y := Y7 xY,. Then it is easy to see that X? = X,
and Y = {(y,1) | 0 <y <2}, and d(X;,Y;) =1 for each 7 = 1, 2.
Let A;: X — 2% and f; : Y — R be correspondences defined by for each
z = ((21,0), (x2,0)) € X and ((y1,2), (21,22)) €Y,

A1 ((21,0), (22,0)) == {(z1,0) |1 < a < (z1 — 1)® + 2}
Az((1,0), (z2,0)) == {(2 — 22,0) | 1 < b < (z1 — 1)* + 2}
A(1,92), (21, 22)) :==1—93;  fa((W1,92), (21,22)) :==1— 23.

Then, it is clear that each A;(x) is non-empty closed and convex subset of ¥; for
eachx € X and i = 1,2. Also, it is easy to see that A; is upper semicontinuous
in X. And, we can see that X° = X, Y° = {((y1,1),(y2,1)) |0 < y1,52 < 3},
and d(X;,Y;) = 1 for each i = 1,2. Then, for each z € X° = X, it is easy
to see that A;(z) NYY = {(z1,1)} # 0 and Ax(z) NYY = {(2 — z2,1)} # 0;
however, A;((1,0),(1,0)) ¢ Y, for each ¢ = 1,2, and A]'(a,1) is not open
in X for each (a,1) € Y so that the previous theorems due to Debreu [4],
Nash (14, 15], Kim-Lee [11, 12], Srinivasan-Veeramani [24] can not be applied
in this model. It is easy to see that since each f; is continuous and concave,
the assumptions (3)(i) and (ii) of Theorem 4 are satisfied so that there exists
a Nash equilibrium pair (Z,§) € X x Y for I', that is, we can obtain that
z = ((1,0),(1,0)), ¥ = ((1,1),(1,1)) is the desired Nash equilibrium pair for
the generalized 2-person game I'. In fact, for each i = 1, 2, we have

7:=(1,1) € A;((1,0),(1,0)) = {(L,a) |1 < a < 2};
1=d(z;, Ai(Z)) = d(X;,Y;); and
0=/£1((1,1),(1,1)) 2 fi((y1,92), (1, 1)) =1 — 43, ¥ (31,92) €41 ((1,0),(L,0));
0=f2((1,1), (1, 1)) 2 f2((1,1), (21, 22)) =1 — 23, V (21,22) €A2((1,0),(1,0)).
Acknowledgements. The authors would like to thank the referee for helpful
comiments.
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