DOI QR코드

DOI QR Code

THE BFK-GLUING FORMULA FOR ZETA-DETERMINANTS AND THE VALUE OF RELATIVE ZETA FUNCTIONS AT ZERO

  • Published : 2008.09.30

Abstract

The purpose of this paper is to discuss the constant term appearing in the BFK-gluing formula for the zeta-determinants of Laplacians on a complete Riemannian manifold when the warped product metric is given on a collar neighborhood of a cutting compact hypersurface. If the dimension of a hypersurface is odd, generally this constant is known to be zero. In this paper we describe this constant by using the heat kernel asymptotics and compute it explicitly when the dimension of a hypersurface is 2 and 4. As a byproduct we obtain some results for the value of relative zeta functions at s=0.

Keywords

References

  1. U. Bunke, Relative index theory, J. Funct. Anal. 105 (1992), no. 1, 63-76 https://doi.org/10.1016/0022-1236(92)90072-Q
  2. D. Burghelea, L. Friedlander, and T. Kappeler, Meyer-Vietoris type formula for determinants of elliptic differential operators, J. Funct. Anal. 107 (1992), no. 1, 34-65 https://doi.org/10.1016/0022-1236(92)90099-5
  3. G. Carron, Determinant relatif et la fonction Xi, Amer. J. Math. 124 (2002), no. 2, 307-352 https://doi.org/10.1353/ajm.2002.0011
  4. G. Grubb and R. Seeley, Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems, Invent. Math. 121 (1995), no. 3, 481-529 https://doi.org/10.1007/BF01884310
  5. C. Kassel, Le residu non commutatif (d'apres M. Wodzicki), Seminaire Bourbaki, Vol. 1988/89. Asterisque No. 177-178 (1989), Exp. No. 708, 199-229
  6. P. Kirk and M. Lesch, The $\eta$-invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary, Forum Math. 16 (2004), no. 4, 553-629 https://doi.org/10.1515/form.2004.027
  7. Y. Lee, Mayer-Vietoris formula for the determinant of a Laplace operator on an evendimensional manifold, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1933-1940 https://doi.org/10.2307/2161013
  8. Y. Lee, Mayer-Vietoris formula for determinants of elliptic operators of Laplace-Beltrami type (after Burghelea, Friedlander and Kappeler), Differential Geom. Appl. 7 (1997), no. 4, 325-340 https://doi.org/10.1016/S0926-2245(96)00053-8
  9. Y. Lee, Burghelea-Friedlander-Kappeler's gluing formula for the zeta-determinant and its applications to the adiabatic decompositions of the zeta-determinant and the analytic torsion, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4093-4110 https://doi.org/10.1090/S0002-9947-03-03249-5
  10. Y. Lee, The zeta-determinants of Dirac Laplacians with boundary conditions on the smooth, self-adjoint Grassmannian, J. Geom. Phys. 57 (2007), no. 10, 1951-1976 https://doi.org/10.1016/j.geomphys.2007.04.001
  11. P. Loya and J. Park, On the gluing problem for the spectral invariants of Dirac operators, Adv. Math. 202 (2006), no. 2, 401-450 https://doi.org/10.1016/j.aim.2005.03.012
  12. W. Muller, Eta invariants and manifolds with boundary, J. Differential Geom. 40 (1994), no. 2, 311-377 https://doi.org/10.4310/jdg/1214455539
  13. W. Muller, Relative zeta functions, relative determinants and scattering theory, Comm. Math. Phys. 192 (1998), no. 2, 309-347 https://doi.org/10.1007/s002200050301
  14. J. Muller and W. Muller, Regularized determinants of Laplace-type operators, analytic surgery, and relative determinants, Duke Math. J. 133 (2006), no. 2, 259-312 https://doi.org/10.1215/S0012-7094-06-13323-9
  15. P. Park and K. Wojciechowski, Adiabatic decomposition of the $\zeta$-determinant of the Dirac Laplacian. I. The case of an invertible tangential operator, With an appendix by Yoonweon Lee, Comm. Partial Differential Equations 27 (2002), no. 7-8, 1407-1435 https://doi.org/10.1081/PDE-120005843
  16. P. Park and K. Wojciechowski, Agranovich-Dynin formula for the zeta-determinants of the Neumann and Dirichlet problems, Spectral geometry of manifolds with boundary and decomposition of manifolds, 109-121, Contemp. Math., 366, Amer. Math. Soc., Providence, RI, 2005 https://doi.org/10.1090/conm/366/06727
  17. S. G. Scott and K. P. Wojciechowski, The $\zeta$-determinant and Quillen determinant for a Dirac operator on a manifold with boundary, Geom. Funct. Anal. 10 (2000), no. 5, 1202-1236 https://doi.org/10.1007/PL00001651
  18. M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Translated from the Russian by Stig I. Andersson. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1987
  19. W. Voros, Spectral functions, special functions and the Selberg zeta function, Comm. Math. Phys. 110 (1987), no. 3, 439-465 https://doi.org/10.1007/BF01212422

Cited by

  1. Relative zeta-determinants of Dirac Laplacians on a half-infinite cylinder with boundary conditions in the smooth, self-adjoint Grassmannian vol.59, pp.8, 2009, https://doi.org/10.1016/j.geomphys.2009.05.002
  2. The Burghelea-Friedlander-Kappeler–gluing formula for zeta-determinants on a warped product manifold and a product manifold vol.56, pp.12, 2015, https://doi.org/10.1063/1.4936074