References
- U. Bunke, Relative index theory, J. Funct. Anal. 105 (1992), no. 1, 63-76 https://doi.org/10.1016/0022-1236(92)90072-Q
- D. Burghelea, L. Friedlander, and T. Kappeler, Meyer-Vietoris type formula for determinants of elliptic differential operators, J. Funct. Anal. 107 (1992), no. 1, 34-65 https://doi.org/10.1016/0022-1236(92)90099-5
- G. Carron, Determinant relatif et la fonction Xi, Amer. J. Math. 124 (2002), no. 2, 307-352 https://doi.org/10.1353/ajm.2002.0011
- G. Grubb and R. Seeley, Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems, Invent. Math. 121 (1995), no. 3, 481-529 https://doi.org/10.1007/BF01884310
- C. Kassel, Le residu non commutatif (d'apres M. Wodzicki), Seminaire Bourbaki, Vol. 1988/89. Asterisque No. 177-178 (1989), Exp. No. 708, 199-229
-
P. Kirk and M. Lesch, The
$\eta$ -invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary, Forum Math. 16 (2004), no. 4, 553-629 https://doi.org/10.1515/form.2004.027 - Y. Lee, Mayer-Vietoris formula for the determinant of a Laplace operator on an evendimensional manifold, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1933-1940 https://doi.org/10.2307/2161013
- Y. Lee, Mayer-Vietoris formula for determinants of elliptic operators of Laplace-Beltrami type (after Burghelea, Friedlander and Kappeler), Differential Geom. Appl. 7 (1997), no. 4, 325-340 https://doi.org/10.1016/S0926-2245(96)00053-8
- Y. Lee, Burghelea-Friedlander-Kappeler's gluing formula for the zeta-determinant and its applications to the adiabatic decompositions of the zeta-determinant and the analytic torsion, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4093-4110 https://doi.org/10.1090/S0002-9947-03-03249-5
- Y. Lee, The zeta-determinants of Dirac Laplacians with boundary conditions on the smooth, self-adjoint Grassmannian, J. Geom. Phys. 57 (2007), no. 10, 1951-1976 https://doi.org/10.1016/j.geomphys.2007.04.001
- P. Loya and J. Park, On the gluing problem for the spectral invariants of Dirac operators, Adv. Math. 202 (2006), no. 2, 401-450 https://doi.org/10.1016/j.aim.2005.03.012
- W. Muller, Eta invariants and manifolds with boundary, J. Differential Geom. 40 (1994), no. 2, 311-377 https://doi.org/10.4310/jdg/1214455539
- W. Muller, Relative zeta functions, relative determinants and scattering theory, Comm. Math. Phys. 192 (1998), no. 2, 309-347 https://doi.org/10.1007/s002200050301
- J. Muller and W. Muller, Regularized determinants of Laplace-type operators, analytic surgery, and relative determinants, Duke Math. J. 133 (2006), no. 2, 259-312 https://doi.org/10.1215/S0012-7094-06-13323-9
-
P. Park and K. Wojciechowski, Adiabatic decomposition of the
$\zeta$ -determinant of the Dirac Laplacian. I. The case of an invertible tangential operator, With an appendix by Yoonweon Lee, Comm. Partial Differential Equations 27 (2002), no. 7-8, 1407-1435 https://doi.org/10.1081/PDE-120005843 - P. Park and K. Wojciechowski, Agranovich-Dynin formula for the zeta-determinants of the Neumann and Dirichlet problems, Spectral geometry of manifolds with boundary and decomposition of manifolds, 109-121, Contemp. Math., 366, Amer. Math. Soc., Providence, RI, 2005 https://doi.org/10.1090/conm/366/06727
-
S. G. Scott and K. P. Wojciechowski, The
$\zeta$ -determinant and Quillen determinant for a Dirac operator on a manifold with boundary, Geom. Funct. Anal. 10 (2000), no. 5, 1202-1236 https://doi.org/10.1007/PL00001651 - M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Translated from the Russian by Stig I. Andersson. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1987
- W. Voros, Spectral functions, special functions and the Selberg zeta function, Comm. Math. Phys. 110 (1987), no. 3, 439-465 https://doi.org/10.1007/BF01212422
Cited by
- Relative zeta-determinants of Dirac Laplacians on a half-infinite cylinder with boundary conditions in the smooth, self-adjoint Grassmannian vol.59, pp.8, 2009, https://doi.org/10.1016/j.geomphys.2009.05.002
- The Burghelea-Friedlander-Kappeler–gluing formula for zeta-determinants on a warped product manifold and a product manifold vol.56, pp.12, 2015, https://doi.org/10.1063/1.4936074