DOI QR코드

DOI QR Code

Study for State Analysis of Linear Systems using Haar Wavelet

Haar 웨이블릿을 이용한 선형시스템의 상태해석에 관한 연구

  • 김범수 (경상대학교 기계항공공학부, 해양산업연구소) ;
  • 심일주 (대림대학교 자동화시스템과)
  • Published : 2008.10.01

Abstract

In this paper Haar functions are developed to approximate the solutions of continuous time linear system. Properties of Haar functions are first presented, and an explicit expression for the inverse of the Haar operational matrix is presented. Using the inverse of the Haar operational matrix the full order Stein equation should be solved in terms of the solutions of pure algebraic matrix equations, which reduces the computation time remarkably. Finally a numerical example is illustrated to demonstrate the validity of the proposed algorithm.

Keywords

References

  1. R. S. Stankovic and B. J. Falkowski, 'The haar wavelet transform: its status and achievements,' Computers and Electrical Engineering, vol. 29, no. 1, pp. 25-44, 2003 https://doi.org/10.1016/S0045-7906(01)00011-8
  2. C. F. Chen and C. H. Hsiao, 'Haar wavelet method for solving lumped and distributed-parameter systems,' IEE Proc. Control Theory Appl. vol. 144, pp. 87-94, 1997 https://doi.org/10.1049/ip-cta:19970702
  3. M. Ohkita and Y. Kobayashi, 'An application of rationalized Haar functions to solution of linear differential equations.' IEEE Trans. Circuits Systems I. Fund. Theory Appl. vol. 9, pp. 853-862, 1986
  4. C. H. Hsiao and W. J. Wang, 'State analysis and parameter estimation of bilinear systems via Haar wavelets,' IEEE Trans. Circuits Systems I. Fundam. Theory Appl. vol. 47, pp. 246-250, 2000 https://doi.org/10.1109/81.828579
  5. B. S. Kim, I. J. Shim, B. K. Choi, and J. H. Jeong, 'Wavelet based control for linear systems via reduced order Sylvester equation,' The 3rd Int. Conf. on Cooling and Heating Technologies, pp. 239-244, 2007
  6. B. S. Kim and I. J. Shim, 'Haar wavelet-based control for HVAC systems,' 2007 Int. Sym. On Advanced Intelligent Systems, pp. 647-650, 2007
  7. M. H. Reihani and Z. Abadi, 'Rationalized haar functions method for solving Fredholm and Volterra integral equations,' Journal of Computational and Applied Mathematics, vol. 200, pp. 12-20, 2007 https://doi.org/10.1016/j.cam.2005.12.026
  8. C. H. Hsiao, 'Solution of variational problems via Haar orthonormal wavelet direct method,' Int. J. Comput. Math, vol. 81, pp. 871-887, 2004 https://doi.org/10.1080/00207160410001712323
  9. A. Haar, 'Zur theorie der orthogonaler funktionensysteme,' Math. Ann. vol. 69, pp. 331-371, 1910 https://doi.org/10.1007/BF01456326
  10. C. H. Hsiao, 'State analysis of linear time delayed systems via Haar wavelets,' Math. Comput. Simul. vol. 44, pp. 457-470, 1997 https://doi.org/10.1016/S0378-4754(97)00075-X
  11. C. H. Hsiao and W. J. Wang, 'Optimal control of linear timevarying systems via Haar wavelets,' J. Optim. Theory Appl. vol. 103, pp. 641-655, 1999 https://doi.org/10.1023/A:1021740209084
  12. C. F. Chen and C. H. Hsiao, 'Wavelet approach to optimising dynamic systems,' IEE Proc. Pt. D Control Theory Appl. 146, pp. 213-219, 1999
  13. C. H. Hsiao and W. J. Wang, 'State analysis and parameter estimation of bilinear systems via Haar wavelets,' IEEE Trans. Circuits Syst. I Fundam. Theory Appl. vol. 47, pp. 246-250, 2000. https://doi.org/10.1109/81.828579
  14. R. A. Horn and C. R. Johnson, 'Matrix analysis,' New York, Cambridge Univ. Press, 1985
  15. J. Brewer, 'Kronecker products and matrix calculus in system theory,' IEEE Trans. on Circuits and Systems, vol. 25, pp. 772-781, 1978 https://doi.org/10.1109/TCS.1978.1084534

Cited by

  1. An Efficient Computational Method for Linear Time-invariant Systems via Legendre Wavelet vol.19, pp.7, 2013, https://doi.org/10.5302/J.ICROS.2013.13.1908
  2. Numerical Method for the Analysis of Bilinear Systems via Legendre Wavelets vol.19, pp.9, 2013, https://doi.org/10.5302/J.ICROS.2013.13.1911