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Abstract

We give some properties of intuitionistc fuzzy left, right, and two-sided ideals and bi-ideals of a semigroup. And we characterize a regular
semigroup, a semigroup that is a lattice of lefi(right) simple semigroups, a semigroup that is a semilattice of left(right) groups and a
semigroup that is a semilattice of groups in terms of intuitionistic fuzzy ideals and intuitionistic fuzzy bi-ideals.
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0. Introduction

As a generalization of fuzzy sets defined by
Zadeh([26], the notion of intuitionistic fuzzy sets was
introduced by Atanassov([2] 1986. After that time,
Coker et al.[6,7,8], Lee and Lee[22], and Hur et al.[13]
applied the concept of intuitionistic fuzzy sets to topol-
ogy. In particular, Hur et al.[12] applied the notion
of intuitionistic fuzzy sets to topological group. Also,
several researchers|1,3,4,9-11,14,15] applied one to al-
gebra.

In this paper, we give some properties of intuitionistc
fuzzy left, right, and two-sided ideals and bi-ideals of a
semigroup. And we characterize a regular semigroup,
a semigroup that is a lattice of left(right) simple semi-
groups, a semigroup that is a semilattice of left(right)
groups and a semigroup that is a semilattice of groups
in terms of intuitionistic fuzzy ideals and intuitionis-
tic fuzzy bi-ideals. Another characterization of such

semigroup can be seen in [14].

1. Preliminaries

We will list some concept and one result needed in
the later sections.

For sets X, Y and Z, f = (f1,f2) : X = Y x 7
is called a complex mapping if f1 : X — Y and

f2 1 X — Z are mappings.

Throughout this paper, we will denote the unit in-
terval [0,1] as 1.

Definition 1.1[2,6]. Let X be a nonempty set. A
(pa,va) + X — I x1is
called an intuitionistic fuzzy set(in short, IFS) in X
if pa(z) +va(z) < 1 for each © € X, where the

complex mapping A =

mapping pa : X — I and v4 : X — I denote the
degree of membership (namely 1 4(z)) and the degree
of non-membership(namely v4(z)) of each z € X to
A, respectively. In particular, 0. and 1. denote the
intuitionistic fuzzy empty set and the intuitionistic
fuzzy whole set in a set X defined by 0.(z) = (0,1)
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and 1. (z) = (1,0) for each z € X, respectively.
We will denote the set of all IFSs in X as IFS(X).

Definition 1.2[2]. Let X be a nonempty sets and
let A= {(ua,v4)and B = (up,vp) be an IFSs in X.
Then

(1) Ac Bifand only if pg < pp and v4 > vg.
(2) A=Bif and only if A C B and B C A.

(3) A° = (va, pra).

(4) ANB = (g A g, va Vup).

(6) AUB = (ua V up,va Avg).

Definition 1.3[6].
ily of IFSs in X, where A; = (ua,,va,) for each i € J.
Then

M) NA: = (Apa,, Vva,).

(2) Ui = (Vpa,, Ava,).

Let {A;};cs be an arbitrary fam-

Let S be a semigroup. By a subsemigroup of S we
mean a non-empty subset A of S such that
A2c A
and by a leftfresp. right]ideal of S we mean a non-
empty subset A of S such that
SA C Alresp. AS C A].
By two-sided ideal or, simply, ideal we mean a subset
A of § which is both a left and a right ideal of S we

will denote the set of all left ideals[resp. right ideals
and ideals] of S as LI(S)[resp. RI(S) and I(S)].

Definition 1.4[9]. Let S be a semigroup and let A €
IFS(S).
semigroup(in short, IF'SG) of S if for any z,y € 9,

Then A is called an intuitionistic fuzzy sub-

palzy) > pa(@) A paly) and va(zy) <
va(z) Vvaly).

We will denote the set of all IFSGs as IFSG(S).

Example 1.4. Let S = {a,b,c} be the semigroup

with the following operation on S:
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We define a complex mapping A = (ua,v4) : S —
I x I as follows : A(a) = (A1, 1), A(d) = (Mg, pa)
and A(c) = (As,p3) where X\;,pu; € I such that
0 < AN+ p <1fori= 1,23 Then we can eas-
ily see that A € IFSG(S). [ ]

Definition 1.5[9]. Let S be a semigroup and let A €
IFS(S). Then A is called an:

(1) intuttionistic fuzzy left ideal(in short, IFLI)
of S if pa(zy) > paly) and va(zy) < valy) for any
z,y € 8.

(2) intuitionistic fuzzy right ideal(in short, IFRI)
of S if pa(ey) > pa(z) and va(ey) < va(z) for any
r,y€S.

(3) intustionistic fuzzy ideal(in short, IFI) of S if
it is both an IFLI and an IFRL of S.

We will denote the set of all IFRIs[resp. IFLIs, and
IFIs] of S as IFRI(S)[resp. IFLI(S), and IFI(S)].

Example 1.5 Let A be the intuitionistic fuzzy semi-
group of S defined in Example 1.4. Then we can easily
see that A € IFLI(S). On the other hand, if A(a) #
A(D), A(a) # A(c) or A(b) # A(c), then A ¢IFRI(S).
So A ¢IFI(S). However, if A(a) = A(b) = A(c), then
clearly A € IFI(S). |

Result 1.A[9, Proposition 3.8]. Let A be a non-
empty subset of a semigroup S and let x4 be the char-
acteristic function of A.

(1) A is a subsemigroup of S if and only if
(X4, xa¢) € IFSG(S).

(2) A € LI(S)[resp. RI(S) and I(S)] if and only if
(x4,xac) € IFLI(S)[resp. IFRI(S) and IFI(S)).

A subsemigroup A of a semigroup S is called a
bi-ideal of § if ASA C A. We will denote the set of
all bi-ideal of S as BI(S).



Result 1.B[9, Proposition 3.2]. Let S be a semi-
group and let 0. # A € IFS(S). Then A € IFSG(S)
if and only if Ao A C A.

Result 1.C[16, Lemmas 1.6 and 1.6']. Let S be a
semigroup and let A € IFS(S). Then A € IFLI(S)
resp. IFRI(S)] if and only if 1.0 A C A [resp.
Aol. C A

Result 1.D[16, Theorem 1.7]. Let S be a semi-
group and let A € IFS(S). Then A € IFI(S) if and
onlyifl.oAC Aand Ao1l. C A.

2. Properties of intuitionistic fuzzy bi-
ideals of a semigroup

For an intuitionistic fuzzy bi-ideal of a semigroup,

the following characterization is well-known.

Result 2.A[14, Proposition 2.5]. Let A be a non-
empty subset of a semigroup S. Then A € BI(9) if
and only if (x4, xa<) € IFBI(S).

Result 2.B[14, Proposition 2.7]. Every [FLI[resp.
IFRI and IFI] of a semigroup S is an IFBI of S.

Definition 2.1[14]. Let S be a semigroup and let
A € TFSG(S). Then A is called an intuitionistic fuzzy
bi-ideal(in short, IF BT) of S if for any 2,y,z € S,

paleyz) 2 pa(@) A palz) and va(ryz) <
va(z) Vva(z).

We will denote the set of all IFBIs of S as IFBI(S).

Example 2.1. Let A be the intuitionistic fuzzy semi-
group of S defined in Example 1.4. Then we can easily
see that A € IFBI(S). |

Definition 2.2[9]. Let (X,-) be a groupoid and let
A,B € IFS(X). Then the intuitionistic fuzzy product

Ao B of A and B is defined as follows : For each

Intuitionistic Fuzzy Semigroups

re X,

Vrg(z)] if = is expressible as © = yz,

(0,1)

F(AcB)(z) =

otherwise.

From Proposition 2.3(1) in [9], it is clear that if S is

a semigroup, then ”0” is associative in IFS(S).

Theorem 2.3. Let S be a semigroup and let A €
IFS(S). Then A € IFBI(S) if and only if Ac A C A
and Aol.oACA.

Proof.(=): Suppose A € IFBI(S). Since A €
TFSG(S), by Result 1.B, Ao A C A. Leta € S.

Case (1): Suppose (Ao 1.0 A)(a)=(0,1). Then
it is clear that Ao 1., 0 A C A.

Case (ii): Suppose (Aol o A)(a) # (0,1). Then
there exist z,y,p,q € S such that ¢ = xy and = = pg.
Thus

PAol oA(@) = faot. )onla)

= Vacaytao1. () A pa(y)]
=V (Vampga®) A (D)) A pra
pa(y)]
= Vacay (Vampg (a(p) A1) A pa(y)]
= Voaray 4 (P) A pa(y)]
< Va—ay ta(pgy) (Since A € IFBI(S))
= \/a:my fralry)
= pa(a)
and
VAol 0A(@) = V(401.)04 (@)
= NazaylVao1.(z) Vva(y)]
= Namayl(Nampqlva(p) Vi (@)]) Vva
()]
= Namay (Nampe(ralp) V1)) V va(y)]
= Nazaylvalp) vV va(y)l
> Naeay vA(PGY)
= Nazay va(ey)
=vala).
So Aol oA CA. Hence,inall, Aol oA CA.

209



International Journal of Fuzzy Logic and Intelligent Systems, vol. 8, no. 3, September

(<) Suppose Ao A C Aand Aol. oA C A
Since Ao A C A, by Result 1.B, it is clear that A €
IFSG(S).

pa(zyz) = pala)

> H(Ao1.)oal(a) (Since Aol oA C A)
= Vo pelitaor. (6) A ()]

> paot. (zy) A pa(z)

= (Vaympg[ka(®) A p1_ (] A palz)

2 pa(@) A (y) A pa(z)

= pa(@) ANLA pa(2)

= pa(@) A pa(z)

Let z,y,z € S and let a = zyz. Then

and
va(zyz) = va(a)

> V(d01.)04 ()

= NasclVa01.(b) V va(c)]

< Vo1 (xy) Vva(z)
(Aay=pglva(p) V1 (@)] Vvalz)
Sva@) Ve (y) Vva(z)
va(z) VOV u(z)
=va(z) Vralz).
Hence A ¢ IFBI(S).
[ |

A

This completes the proof.

Proposition 2.4. Let S be a semigroup, and let A €
IFS(S) and let B € IFBI(S). Then Ao B,Bo A €
IFBI(S).

Proof. (AoB)o(AoB)=Ao[Bo(AoB)
CAo(Bol.oB)
C Ao B. (By Theorem 2.3)
Thus it is clear that Ao B € IFSG(S) from Result 1.B.
On the other hand,
(AoB)ol.o(AoB)=Aoc[Bo(l.ocA)oB]

CAo(Bol.oB)

C Ao B. (By Theorem 2.3)
by Theorem 2.3, A o B € IFBI(S).
By the similar arguments, it can be seen that
B o A € IFBI(S).
]

Hence,

This completes the proof.

3. Regular semigroups

210

A semigroup S is said to be regular if for each a € 9,
there exists an € S such that ¢« = aza. As it is
well-known (See Theorem 2.6 in [21]), a semigroup S
is regular if and only if B = BSB for each B € BI(S).
Now we will give a characterization of a regular semi-

group by intuitionistic fuzzy bi-ideals.

Theorem 3.1. Let S be a semigroup. Then S is reg-
ular if and only if A = Aol. oA for each A € TFBI(S).

Proof.(=): Suppose S is regular. Let A € IFBI(S)
andlet a € S. Since S is regular, there existsanxz € S
such that a = axa. Thus
tao1.0a(a) = Vooy. lao1. (y) A pa(z)]

2 fraor,. (ax) A pala)

= (Vazmpglta(®) A pa (@] A pala)

2 pala) A pr () A pala)

= pa(a) N1 A pa(a)

= pa(a)
and
Vaor.oa(@) = Ny [Vaor () V va(2)]
< v401..(az) V vala)

= Nawmpal?a®) V11 (@)] V vaa)
<wala) Vi )(z) Vrvala)
=va(a) VOVwvs(a)
=wv4(a).
So A C Aol. oA Since A € IFBI(S), it is clear
that Aol., oA C A from Theorem 2.3. Hence A =
Aol. oA
(<) Suppose A = Aol.o A for each A €
IFRI(S). Let A € BI(S) and let @ € A. Then, by
Result 2.A, (x4, xac) € IFBI(S). By the hypothesis,
(xa,x4¢) o 1o o(xa,xac) = (x4, Xae). Thus
(A xas) © 1) 0 (s Xae))(@) = (xa x4°)(@)

= (1,0).
On the other hand,
[((xa,x4¢) 0 1) 0 (x4, x4°)](a)
= (Vamy: Hxaxae)or. (¥) A xa(z)]

’ /\a:yz [V(XA,xAc)olN (y) V X Ac (Z)])
Then

va:yz ['U‘(XA,XAC)OLV (y) A XA(z)] =1
and



/\a:yz[l/()(A.,)(Ac)OlN (y) \/ XA“ (Z)] - 0
Thus there exist b,c € S with @ = bc such that

F(xaxac)o(xsxse) () =1, V(xa,xac)o(xsxse)(b)
=0
and
xalc) =1, xa-(c) =0.

SO Vb:pq[l’l’A(p) A H1~ (q)] = ]‘ and /\b:pq{XAc(p) A
v1.(¢)] = 0. Then there exist d,e € S with b = de
such that

MA(d) =1 ’ XAC<d) =0 and U1~<e) = 17
vi_(e) =0.
Thus d € A, e € S and ¢ € A, ie, a =

be = (de)e € ASA. So A C ASA. Since A €
BI(S), it is clear that ASA < A. Thus A =
ASA. Hence S is This
proof. |

regular. completes the

Theorem 3.2. Let S be a regular semigroup and let
A €IFS(S). Then A € IFBI(S) if and only if there ex-
ist B € IFRI(S) and C' € IFLI(S) such that A = BoC.

Proof.(=): Suppose A € IFBI(S). Since S is regu-
lar, it is clear that A = Ao 1., o A from Theorem 3.1.
Then
A=Aol . oA=A01l.0(Acl_oA)
=(Aol.oA)o(luod)C(Aoloo(lu0A)
=Ao(l.ol)oAC Aol ocAC A
(By Theorem 2.3)

Thus A = (Aol.)o(looA). Let Aol, = B and

let 1. 0 A = C. Then, by Result 1.C, B € IFRI(S)
and C' € IFLI(S). Hence there exist B € IFRI(S) and
C € IFLI(S) such that A = BC.

(<): Let A €IFS(S). Suppose there exist B €
IFRI(S) and C € IFLI(S) such that A = BoC. Then,
by Result 2.B, B,C € IFBI(S). By Proposition 2.4,
BoC € IFBI(S). Hence A ¢ IFBI(S).
pletes the proof. [ |

This com-

Result 3.A[18, Theorem 5]. Let S be a semigroup.
Then § is regular if and only if BNJ = BJB for each
B € BI(S) and each J € 1(S).

Intuitionistic Fuzzy Semigroups

We will give another characterization if such a

semigroup.

Theorem 3.3. Let S be a semigroup. Then S is
regular if and only if ANB = Ao Bo A foreach A €
IFBI(S) and each B € IFI(S).

Proof.(=): Suppose S is regular. Let A € IFBI(S)

and let B € IFI(S). Then, by Theorem 2.3, AoBoA C

Aol.oACA. By Result 1.D,
AoBoACl.oBol.Cl,0oBCB.

Thus AcBo AC ANB. Nowlet a € S. Since S is

regular, there exists an x € S such that a = aza(=

Then, since B € IFI(S),
ps(raz) > pp(ar) > pn(o)

araza).

and
vp(zaz) <vg(azr) < vg(a).
Thus
pacBoa(a) = V. [a(y) A ppoa(2)]

> 1a(a) A ppoa(veza)
= 104(0) NV pagampqliB(P) A 1a(0)])
= pala) A pp(zaz) A pa(a)
> piala) A pp(a) = pans(a)

and

[va(y) V vpoa(2)]

a) V vpoa(raza)

(AsazacpgVB(P) V va(@)])

VaoBoa(a) = Ny,
< vala)
=vala)V
<wvala) Vvp(zax)V va(a)
<wvala)Vvg(a) =vang(a).
So ANBCAoBoA. Hence Ao Bo A= ANB.
(<): Suppose the necessary condition holds and
let A € IFBI(S). It is clear that 1., € IFI(S). Then,
by the hypothesis, A = ANnl.=Ao1l.0A. Hence,

by Theorem 3.1, S is regular. This completes the
proof. [ |

Result 3.B[17, Theorem 1]. Let S be a semigroup.
Then § is regular if and only if RL = RN L for each
R € RI(9) and each L € LI(S).

We will given another characterization of such a

semigroup.
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Theorem 3.4. Let S be a semigroup. Then S is
regular if and only if Ao B = AN B for each A €
IFRI(S) and each B € IFLI(S).

Proof.(=):
Theorem 3.1 in [1].

(«<=): Suppose the necessary condition holds. Let
R € RI(S) and let L € LI(S). Then it is clear that
RL ¢ RN L. On the other hand, by Result 1.A(2),
(XR, XRe) € IFRI(S) and (xr, xze) € IFLI(S). Then,
by the hypothesis,

It is clear from the proof of (1)=-(2) in

(XRr, XRe) © (XL, XLe) = (XR, XRe) N (XL, XLe)-
Letae RNL. Thena € R and a € L. Thus
Vamyz [XR(Y) A XL(2)] = Bixrxre)otxrxee) (@)
= Mxrxre)N(xexze) (@)
= xr(a) Axr(a) =1
and
Nazy: xR W) A XL (2)] = Vixnxne)oterxe) (@)
= Vixrxre)U(xz xee) (@)
= xgre(a) V xpe(a) = 0.
So there exist b, ¢ € S with a = be such that
Xr(b) =1, xpe(b) = 0 and xr(c) = 1, xrc(c) = 0.
Then b € R and ¢ € L. Thus a = bc € RL. So
RNL C RL. Hence RL = RN L. Therefore, by
Result 3.B, § is regular. This completes the proof.
|

Proposition 3.5. Let S be a regular semigroup.
Then Ao A = A for each A € IFI(S).

Proof. Let A € IFI(S). Then, by Result 1.D,
AoAC Aol. CAand Aol oA C Aol., C A
Thus, by Theorem 2.3, A € IFBI(S). Since S is reg-
ular, by Theorem 3.1, A= Aol ,0A C Ao A. Hence
AoA= A n

4. Intraregular semigroups

A semigroup S is said to be intraregular if for each

a € S there exist z,y € S such that a = za’y.
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It is well-known(See Theorem 4.4 in [5] and Theo-
rem I1.4.5 in[25]) that a semigroup S is intraregular if

and only if it is a semilattice of simple semigroups.

Result 4.A[21, Theorem 36]. Let S be a semi-
group. Then S is intraregular if and only if LN R C
LR for each L € LI(S) and each R € RI(S).

We will give a characterization of an intraregular
semigroup by intuitionistic fuzzy ideals (See Proposi-
tion 4.1 in [14]).

Theorem 4.1. Let S be a semigroup. Then S is
intraregular if and only if ANB C Bo A for each A €
IFRI(S) and each B € IFLI(S).

Proof.(=):
IFRI(S) and let B € IFLI(.S).
intraregular, there exist ,y € S such that a = za’y.
Then,
pBoa(a) = VplB(b) A pa(c)]
> pp(za) A palay)
> ugp(a) A pa(a)(Since B € TFLI(S) and
A € IFRI(S))

= panp(a)

Suppose S is intraregular. Let A €
Let a € S§. Since S is

and
VBoa(a) = NqepelvB(b) V va(c)]
<vg(za)Vvalay)
<wvg(a)Vvala)
= vang(a).
Hence ANB C Bo A.
(«<): Suppose the necessary condition holds. Let
R € RI(S) and let L € LI(S). Let a € LN R. Then
a € L and a € R. By Result 1.A(2), (xg,xgr:) €
IFRI(S) and (yz, xr<) € IFLI(S).
(Xr> XRe) N (X2>XLe) C (XLs XLe) © (XR) XRe)-

By the hypothesis,

Thus
\/a:pq [x£(p) A xr(9)] = /’L(XLaXLC)O(XR:XRC)(a)
2 Ixrxze)N(xaxre) (@)
= xc(a) A xr(a)
=1

and



NazpaX2(P) V XR(D] = Vi, xieyolxmcne) (@)
= Vixe xee)U(xroxre) (@)
= xz(a) V xr(a)
= 0.

So there exist b,c € S with ¢ = be such that

xe(b) =1, xrc(b) = 0 and xr(c) = 1, xg-(c) = 0.

Then b € L and ¢ € R. Thus a = bec € LR. So
LN R C LR. Hence, by Result 4.A, S is intraregular.
This completes the proof. |

Result 4.B[21, Theorems 37 and 38]. Let S be a
semigroup. Then the following are equivalent :

(1) S is both regular and intraregular.

(2) B* = B for each B € BI(S)

(3) ANB C ABN BA for each A, B € BI(S).

(4) BNL C BLNLB for each B ¢ BI(S) and each
L € LI(S).

(6) BNR C BRNRDB for each B € BI(S) and each
R € RI(S).

(6) LR C LRNRL for each R € RI(S) and each
L e LI(S).

We will give a characterization of a semigroup that
is both regular and intraregualr by intuitionistic fuzzy

ideals.

Theorem 4.2. Let S be a semigroup. Then the fol-
lowing are equivalent :

(1) S is both regular and intraregualr.

(2) Ao A= A for each A € IFBI(S).

(3) ANB C (AoB)N(Bo A) for any A, B ¢
IFBL(S).

(4) AnNB C (AoB)N
and each B € IFLI(S).

(5) ANB C (Ao B)N(BoA) for each A € TFBI(S)
and each B € IFRI(S).

(6) ANB C (AoB)N(BoA) for each A € IFRI(S)
and each B € IFLI(S).

(BoA) for each A € IFBI(S)

Intuitionistic Fuzzy Semigroups

Proof. It is clear that (3) = (2), (3) = (4) = (6)
and (3) = (5) = (6). We will prove that (1) = (3),
(2) = (1) and (6) = (1).

(1) = (3): Suppose the condition (1) holds. Let
A,B € IFBI(S) and let @ € S. Since S is regular,
there exists an x € S such that ¢ = aza(= azaza).
Since S is intraregualr, there exist ¢,z € S such that
a= yaQZ Then

= (azya)(azza).
Since A, B € IFBI(S).
palazya) > pala) A pala)
~ pa(@), valazya)
< VA(G)V ala)
(a)

and

pplazza) = ppla) A ppla)

Thus
taoB(a) =V, e l1alp) A np(g)]
> palozya) A pploazza)
> pala) A pp(a)
= ptanp(a)
and
V403(8) = Ncgylva(p) V v5(0)]
<vwvalazya) vV vglazza)
<wva(a) Vrvg(a)
=VanB (G)-
so ANB C Ao B. By the similar arguments, we have
ANBCBoA. Hence ANBC (Ao B)N(BoA).
(6) = (1): Suppose the condition (6) holds. Let
A € TFRI(S) and let B € IFLI(S). Then, by the hy-
pothesis, ANB C (AoB)N(BoA) C BoA. Thus, by
Theorem 4.1, S is intraregular. On the other hand,
ANBC(AoB)N(BoA) C Ao B. As it is stated
in the proof of Theorem 3.4, we have Ao B C AN B.
Thus ANB = AoB. So, by Theorem 3.4, S is regular.
Hence S is both regular and intraregualr.
(2) = (1): Suppose the condition (2) holds. Let
B ¢ BI(S) and let a € S. Then, by Result 1.E,
(xB,XxBe) € IFBI(S). Thus, by the hypothesis,

213



International Journal of Fuzzy Logic and Intelligent Systems, vol. 8, no. 3, September

(xB>xB<) © (xB,XBe) = (XB) XB°)-

So

(Vacpgx(0) A xB(@)]s Agepg[XBe (P) A XB<(9)])

= [(xB,xB<) © (xB, XB)|(a)

= (xB,xB¢)(a)

= (1,0).
Then there exist b, ¢ € S with a = bc such that

x8(8) = x5(e) = 1 and x5 (b) = x5-(c) = 0.

Thus b,c € B. So a = bc € BB, ie, B C
BB. Since B € BI(S), it is clear that BB C
B. Thus B? = B. Hence, by Result 4.B, S is
both regular and intraregular. This completes the

proof. [ ]

5. Semilattice of left groups

A semigroup S is called a left group if it is regular
and right cancellative, and is called a semilattice of left
groups if it is the set-theoretical union of a family of
left groups G;(i € M):

S = UiemGi
such that for each (i,7) € M x M, G;G; C Gy and
GGy C Gy, for some k € M. A semigroup S is said
to be right[resp. leff|regular if for each @ € S there

2z[resp. a = za?].

exists an « € S such that a = a
Result 5.A[21, Theorem 80]. Let S be a semi-
group. Then the following are equivalent:

(1) S is a semilattice of left groups.

(2) BL =BnNL for each B € BI(S) and each L €

LI(S).

(3) BJ = BN J for each B € BI(S) and each J ¢
I(9).

(4) XJ = X NJ for each X € RI(S)[or LI(S)] and

J € I(S).

(5) S is regular, and every left ideal of S is an ideal
of §.

(6) S is right regular, and every left ideal of S is

an ideal of S.
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Result 5.B[14, Propositions 3.1 and 3.1']. Let S
be a regular semigroup. Then every left[resp. right]
ideal of S is an ideal of S if and only if every IFLI[resp.
IFRI] of S is an IFT of S.

Result 5.C[14, Propositions 3.3 and 3.3]. Let
S be a regular semigroup. Then every bi-ideal of § is
a left[resp. right] ideal of S if and only if every IFBI
of S is an IFLI[resp. IFRI] of S.

Result 5.D[14, Proposition 6.1]. Let S be a left
[resp. right] regular semigroup. Then every left[resp.
right] ideal of S is an ideal of S if and only if every
IFLIfresp. IFRI] of S is an IFI of S.

Now we will give a characterization of a semigroup
that is a semilattice of left groups by intuitionistic

fuzzy ideals.

Theorem 5.1. Let S be a semigroup. Then the fol-
lowing are equivalent :

(1) S is a semilattice of left groups.

(2) Ao BC AN B for each A € IFBI(S) and B €
TFLI(S).

(3) AoB C AN B for each A € IFBI(S) and B €
IFI(S).

(4) AoB C AN B for each A € IFLI(S)(or,
IFRI(SY)) and each B € IFI(S).

(5) S is regular, and every IFLI of S is an IFI of S.

(6) S is right regular, and every IFLI of S is an IFI
of S.

Proof. It is clear that (3) = (2) and (3) = (4).

(1) & (5): It is clear from Results 5.A and 5.B.

(1) & (6): Tt is clear from Results 5.A and 5.B.
We will prove that (1) = (3), (4) = (1) and (2) =
().

(1) = (3): Suppose the condition (1) holds. Let
A € TFBI(S) and let B € IFI(S).
of S, by Result 5.A, B=BNS = BS for each B €
BI(S). Then B € RI(S) for each B € BI(S).
S is regular, by Result 5.C, A € IFRI(S).

Since S is an ideal

Since

Hence, by



Theorem 3.4, Ao B = f B.

(4) = (1): Suppose the condition (4) holds. Let
X € RI(S)[or LI(S)] and let J € I(S). Then, by
Result 1.A(2), (xx,xx-) € IFRI(S)[or IFLI(S)] and
(x7,Xxse) € IFI(S). Let a € X NJ. Then a € X and
a € J. Thus

(VamyzDex () A xG (2] Aaeybexe (9) A xae (2)])
=[x, xxe) o (xu, x7¢)(a)
= [(exs xxe) A (x, xe) (@)
= (xx(a) Axs(a), xxe(a) A xe(a))
= (1,0).
So there exist b, ¢ € S with a = be such that
xx(b) =1, xxe(b) =0and xs(c) = 1, xse(c) = 0.
Thus b € X and ¢ € J. Thus ¢ = bc € XJ. So
XNJ C XJ. Now let a ¢ XJ. Then there exist
b,c € S such that @ = bc. Thus
xx(a) Axy(a) = Hxx xxe)n(xsxse) (@)
= B xxe)olxs xae) (@)
= Voey:Xx (1) A xu(2)]
> xx(b) A x(c)
=1
and
Xxe(a) V X7e(a) = Uiy x xxe)n(xsse) (@)
= Vixxxxe)olxsxae) (@)
= Aoy [xxe(y) A xse(2)]
< xxe(b) A xe(e)
=0.
So xx(a) =1, xx<(a) = 0 and xs(a) = 1, xs-(a) = 0.
Then ¢ € X and a € J. Thus a € X N J. So
XJ C XnJ. Hence XJ = X N J. Therefore, by
Result 5.A, S is a semilattice of left groups.

(2) & (1): It can be seen in a similar
way that (4) implies (1). This completes the
proof. |

Theorem 5.1 [The dual of Theorem 5.1]. Let S
be a semigroup. Then the following are equivalent :

(1) S is a semilattice of right groups.

(2) BoAC AN B for each A € TFBI(S) and B €
TFRI(S).

(3) BoAC AN B for each A € IFBI(S) and B €
IFI(S).

Intuitionistic Fuzzy Semigroups

(4) BoA C AN B for each A € IFRI(S)(or,

IFLI(S)) and each B ¢ IFI(S).

(5) S is regular, and every TFRI of S is an IFI of
S.

(6) S is left regular, and every IFRI of § is an IFI
of S.

6. Semilattice of left simple semigroups

A semigroup S is called a semilattice of left simple
semigroups if it is a set-theoretical union of a family

of left simple semigroups S;(i € M):

s=1J s

ieM
such that for each (i,j) € M x M, 5;S; C Sk and
S;9; C Sy, for some k € M.

Result 6.A[20, Theorem 8 ; 24, A Theorem. Let
S be a semigroup. Then the following are equivalent:
(1) S is a semilattice of left simple semigroups.

(2) S is left regular, and every left ideal of S is an
ideal.

(3) AB= AN B for any A, B € LI(S).

(4) LI(S) is a semilattice under the multiplication

of subset.

We will give a characterization of a semigroup that
is a semilattice of left simple semigroups by intuition-

istic fuzzy ideals.

Theorem 6.1. Let .S be a semigroup. Then the fol-
lowing are equivalent:

(1) S is a semilattice of left simple semigroups.

(2) S is left regular, and every TFLI of S is an IFI
of §.

(3) Ao B = AN B for any A, B € IFLI(S).

(4) TFLI(S) is a semilattice under the multiplica-

tion of intuitionistic fuzzy sets.

Proof. (1) < (2):
5.D. (3) = (4):

It is clear from Result 6.A and
It is clear. We will prove that (2) =
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(3) and (4) = (1).

(2) = (3) : Suppose the condition (2) holds. Let
A,B € IFLI(S) and let a € S. Since S is left regu-
lar, there exists an # € S such that ¢ = za®. Then
(Ao B)(a) # (0,1). Thus

paoB(a) = Vooy:l1a(y) A ps(2)]

> pa(za) A pg(a) (Since a = za?)
> pala) Apgla) (Since A € TFLI(S))
= pang(a)
and
vao(a) = Ny lvaly) V vs(2)]
> va(za) Vvg(a) > vala) Vvg(a)
=vangp(a).
So ANB C Ao B. On the other hand,
paoB(@) =V, . [ra(y) A ps(2)]
< Vaey:[ra(yz) A pp(yz)] (Since A €
IFRI(S) and B € TFLI(S))
= pala) A pp(a)
= pang(a)
and
vaes(a) = Ay lvaly) Vv (2)
>V, la2) V vs(2)]
=v4(a) Vvg(a)
= VAmB(a)~
Thus Ac BC ANB. Hence Ao B=ANB.

(4) = (1): Suppose the condition (4) holds. Let
A,B € LI(S) and let a € AB. Then there exist b € A
and ¢ € B such that ¢ = bc. By Result 1.A(2),
(xa,xac), (xB,XxB<) € IFLI(S). Thus

(Vazy:[xBW) Axa(2)] = s, xpe)otiaxac) (@)

= H(xaxae)o(xexse) (@) (B
v the hypothesis)
=V ostlxals) Axa(t)
2 xa(b) A xa(c)
=1
and
(ANamy=lxB@) V X4(2)] = Vixsxpe)otiaxac) (@)
= V(xanxac)o(xs xse) (@)
= Na=stlxa(s) v xs(®)
< xa(b) Vxs(c)
=0
So there exist p,q € S with a = pg such that
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xB(p) =1, xpe(p) =0 and xa(q) = 1,
xa<(q) = 0.
Then p € B and ¢q € A. Thus a = pg € BA,
i.e., AB C BA. By the similar arguments, we have
BA C AB. So AB = BA. Now let A € LI(S) and
let a € A. By Result 1.A(2), (xa,xac) € IFLI(S).
Then,
(Vazylxa®) A xa(@)], Aaeyxac () V xa2(2)])
= (x4, xa¢) © (xa,xa)(a)
= (x4, xa¢)(a)
=(1,0).  (By the hypothesis)
Thus there exist b,c € S with a = be such that
xa(b) =1, xae(b) =0and xa(c) =1, xac(c) =0.
Soa =bce AA. Then A C AA. since A € LI(S),
it is clear that AA C A. Thus AA = A. So LI(S)
is a semilattice. Hence, by Result 6.A, S is a semi-
lattice of left simple semigroups. This completes the

proof. |

Theorem 6.1 [The dual of Theorem 6.1]. Let S
be a semigroup. Then the following are equivalent:
(1) S is a semilattice of right simple semigroups.
(2) S is right regular, and every IFRI of S is an IF1
of S.
(3) Ao B= AN B for any A, B € IFRI(S).
(4) IFRI(S) is a semilattice under the multiplica-

tion of intuitionistic fuzzy sets.

7. Semisimple semigroups

A semigroup S is said to be semisimple if J? = J
for each J € I(S).

Result 7.A[19, Lemma 7.1]. Let S be a semigroup.
Then the following are equivalent:

(1) S is semisimple.

(2) a € SaSaS for each a € S.

(3) AN B = AB for any A, B € I(S).

The equivalence of (1) and (2) of the above Result
7.A is due to Theorem 3 in [25].



We will give a characterization of a semisimple

semigroup by intuitionistic fuzzy ideals.

Theorem 7.1. Let S be a semigroup. Then the fol-
lowing are equivalent:
(1) S is semisimple.
(2) Ao A= A for cach A € IFI(S).
(3) Ao B=AnN B for any A, B € IFI(S).
proof. (1)=(3): Suppose S is semisimple. let
A,B ¢ IFI(S) and let a« € S. By Result 7.A,
there exist x,y,z € S such that @ = zayez. Then
(Ao B)(a) # (0,1). Thus
paoB(@) = Vozplua(d) A pp(e)]
> pa(za) A pg(yaz) (a = rayaz)
> pua(e) A pp(a) (Since A, B € IFI(S))
= pans(a)
and
Vaop(a) = Ay—p[va(b) V vp(c)]
<wvalza)Vvg(yaz)
< vala) Vvp(a)
=vanp(a).
So ANB C Ao B. On the other hand,
HaoB(a) = Vaopolpa(®) A ps(c)]
S Voaspeltra(be) A pp(be) (Since A, B

€ TFI(S))
= pala) A ppla)
= pang(a)
and
Vaos(a) = N,_p.[va(b) V vp(c)]

2 Nazpelvalbe) v vp(be)

=va(a) Vvg(a)

=vanp(a).
Then Ao BC AN B. Hence Ao B = AN B.

(3) = (2) It is clear.
(2) = (1): Suppose the condition (2) holds. Let
€ I(S) and let a € J. By Result 1.A(2) (xj,xJe) €

IFI(S ). Then

Ocr xe)o (s xae)l(@) = (xg. xse)(a) = (1,0).

Thus [(x7,x7°) © (X7, x52)]{a) # (0,1). So

Intuitionistic Fuzzy Semigroups

Vsl 8) A X Ao lxoe(B) V xre(e)]) =
(1,0).
Then there exist p,q € S such that a = pg such that

xs(0) =1, xse(p) =0and x;(q) = 1, xue(q) = 0.
Thus ¢« = pr € JJ. So J C JJ. Since J €
I(S), it is clear that JJ C J. Hence JJ = J.
Therefore S is
proof. n

semisimple. This completes the

8. Semilettice of groups

A semigroup S is called a semilattice of groups
if it is the set-theoretical union of a family of mutu-
ally disjoint subgroups G;(i € M) such that for each
(4,7 € M x M, G;G; C Gy and G,;G; C Gy, for some
ke M.

Result 8.A[20, Theorem 3].

Then the following are equivalent:

Let S be a semigroup.

(1) S is semilattice of groups.

(2) LR = LN R foreach L € LI(S) and each R €
LI(S).

(3) LB = LN B for each L € LI(S) and each B €
BI(S).

(4) BR = BNR for each B € BI(S) and each R €
RI(S).

(5) S is regular, and every one-sided ideal of S is

an ideal.

Result 8.B[14, Corollary 3.4].
group which is a semilattice of groups.
IFBI of S is an IFI of S.

Let S be a semi-
Then every

Now we will give a characterization of a semigroup
which is a semilattice of groups by intuitionistic fuzzy

ideals.

Theorem 8.1. Let § be a semigroup. Then the fol-
lowing are equivalent:

(1) S is a semilattice of groups.

(2) Bo A= Bn A for each A € IFRI(S) and each
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B € IFLI(S).

(3) BoC = BNC for each C € IFBI(S) and each
B € TFLI(S).

(4) CoA=CnA for each C € IFBI(S) and each
A e IFRI(S).

(5) C10Cqy =CyNCy for any Cy,Cy € IFBI(S).

Proof. Since any IFRI[resp. IFLI| of S is an IFBI of
S, it follows that (5) implies (3), (3) implies (2), (5)
implies (4), and (4) implies (2).
(2)=(1) and (1)=(5).

(2)=(1): Suppose the condition (2). Let L €
LI(S) and let R € RI(S). Leta€ LNR. Thena € L
and @ € R. By Result 1.A(2), (xz,xze) € IFLI(S)
and (xr, xre) € [FRI(S). Thus

(XL, xL) 0 (xR, XRe)(@) = [(XL, XL) N (X R XR)]

(a) (By the hypothesis)
= (xr(a) A xr(a), xze
(@) V xr:(a))
=(1,0). (Sincea € L
and a € R)
So [(xz,xre) © (xr, Xre)](a) # (0,1). Moreover,

(Vazay XL () A XRW)], AlxLe(e) V xRe(2)] = (1,

0)).
Then there exist b, c € S with a = bc such that

xL(b) =1, x£e(b) = 0 and xgr(c) =1, xre(c) =0.
Thus b € L and ¢ € R. So a = bc € LR, ie,
LNR C LR. Nowleta e LR. Then there exist b € L
and ¢ € R such that ¢ = bc. Thus

We will prove that

XL(@) A XR = B(xg xee)A(xroxre) (@)
= Bxzxne)o(xnixre) (@) (By the hypo
thesis)
= Voeuy[XL(7) A XR(Y)]
> xr A xgr(c) (Since a = be)
=1 (Since b€ L and c € R)
and
Xze(@) AXRe = V(xp xe) Al xne) (@)
= Vixp.xze)o(xrxre) (@)
= NazaylXze () V XRe (y)]
< Xze V XRe(c)
=0.
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So xr(a) =1, xze{a) = 0 and xg(a) = 1, xge(a) = 0.
Then a € LN R. Thus LR C LN R. Hence LR =
LN R. Therefore, by Result 8.A, S is a semilattice of
groups.

(1)= (5): Suppose the condition (1) holds. Let
C1,Cy € TFBI(S). Then, by Result 8B, C;,Cy €
IFI(S). By Result 8.A, S is regular. Hence, by The-
orem 3.4, Cy o Cy = C7; N Cs. This completes the
proof. [ |

Result 8.C[20, Theorem 1]. Let S be a semigroup.
Then S is a semilattice of groups if and only if BI(S)

is a semilattice under the multiplication of subsets.

Theorem 8.2. Let S be a semigroup. Then § is a
semilattice of groups if and only if IFBI(S) is a semi-
lattice under the multiplication of intuitionistic fuzzy

sets.

Proof. (=)
(<)
A,B € BI(S) and let a € AB. Then there exist
b€ A and ¢ € B such that a = be. By Result 2.A,
(x4, xa¢), (X8, XBe) € IFBI(S). Thus
Vazy:xBW) A xa(2)] = Bixs,xpe)otxaxac) (@)
= (xaxac)o(xaxse) (@) (By
the hypothesis)
=V lxa(5) A x5 (0)
> xa(d) Axe(c)
=1

It is clear From Theorem 8.1.

Suppose the necessary condition holds. Let

and

Namy= X8 () A Xac(2)] = Vi xmedolxanae) (@)
= V(xaxac)o(xmxse) (@)
= Aaselac(s) V xze (0]
< xa(b) Axa(c)
=0.
So there exist p,q € S with a = pq such that
xB(P) =1, xpe(p) = 0and xa(q) =1, xac(q) = 0.
Then p € B and ¢ € A. Thus a = pg € BA,
i.e., AB C BA. By the similar arguments, we have
BA C AB. So AB = BA. Now let A € BI(S) and let

a € A. By Result 2.A, (xa,xa:) € IFBI(S). Then,



by the hypothesis,

(xa,Xxa¢) 0 (x4, xac)(a) = (xa,xa¢)(a) = (1,0).

Thus [(x4,x4¢) © (x4, xac)}(a) # (0,1). Moreover,

Vamy:xa@) Axa(@)], Auzy2Ixac () V xae(a)])
= (1,0).

So there exist b,c € S with a = bc such that

Xa(b) =1, x4¢(b) = 0 and xa(c) =1, xac(c) = 0.

Then a = bc € AA. Thus A ¢ AA. It is clear that
AA C A. So A = AA. Hence BI(S) is a semilattice

‘under the multiplication of subsets. Therefore, by Re-

sult 8.C, S is a semilattice of groups. This completes

the proof. [ |
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