Environmental Distribution and Fate of Perfluorinated Compounds (PFCs) as Emerging POPs: Physico-Chemical Properties, Emission, Contamination Level, Inter-phase Distribution and Long-Range Transport

잠재적 POPs로서의 과불소화화합물의 환경 내 분포 및 거동: 물성, 환경 내 농도수준, 상 분배 및 장거리이동을 중심으로

  • Kim, Seung-Kyu (Institute of Environmental Protection and Safety, NeoEnBiz Co.)
  • 김승규 ((주) 네오엔비즈 환경안전연구소)
  • Published : 2008.09.30

Abstract

Concern about perfluorinated compounds (PFCs) is growing nationally as well as globally. PFCs could be considered emerging POPs due to their environmentally persistent, bioaccumulative, and potentially harmful properties. Moreover. perfluoroalkylates (PFAs) such as PFOS and PFOA are reported to experience long-range transport (LRT) to the Arctic in spite of their low volatility and strong solubility. The possible pathways contributing to LRT have been proposed but are still in debate in combination with unclear source definition and uncertain physico-chemical properties. The environmental fate of PFCs is more complicated because of the presence of precursors that are degraded to PFAs and are extremely different from their daughters, PFAs. in physico-chemical properties. To what extent and through what pathways are human and wildlife exposed is determined by the environmental fate and distribution of PFCs. To define uncertainties in fate and distribution thus is critical to prevent erroneous policy and/or determination related with exposure and risk reduction. This article aimed to review controversy and/or uncertain issues for the environmental fate and distribution of PFCs and to prospect research topics necessary to dissolve uncertainties.

Keywords

References

  1. 환경부. 보도자료-PFOS의 국내 오염 수준, 선진국에 비해 낮은 수준, 2006
  2. 3M. Material Safety Data Sheet for FC-203FC Light Water Brand Aqueous Film Forming Foam, 3M Co., London, ON, Canada, 1999
  3. 3M. Soil Adsorption/Desorption Study of Potassium Perfluorooctane Sulfonate (PFOS); 3M: St. Paul, MN, U.S. Environmental Protection Agency Docket AR 226- 1030a 030, 2000
  4. Armitage J, Cousins IT, Buck RC, Prevedouros K, Russell MH, MacLeod M and Korzeniowski SH. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources, Environ Sci Technol 2006; 40: 6969-6975 https://doi.org/10.1021/es0614870
  5. Arp HPH, Niederer C and Goss K-U. Predicting the partitioning behavior of various highly fluorinated compounds, Environ Sci Technol 2006; 40: 7298-7304 https://doi.org/10.1021/es060744y
  6. Barber JL, Berger U, Caemfa C, Huber S, Jahnke A, Temme C and Jones KC. Analysis of per- and polyfluorinated alkyl substances in air samples from Northwest Europe, J Environ Monit 2007; 9: 530-541 https://doi.org/10.1039/b701417a
  7. Barton CA, Butler LE, Zarzecki CJ, Flaherty J and Kaiser M. Characterizing perfluorooctanoate in ambient air near the fence line of a manufacturing facility: Comparing modeled and monitored values, Air & Waste Manage Assoc 2006; 56: 48-55 https://doi.org/10.1080/10473289.2006.10464429
  8. Biegel LB, Hurtt ME, Frame SR, O'Connor JC and Cook JC. Mechanisms of extrahepatic tumor induction by peroxisome proliferators in male CD rats, Toxicol Sci 2001; 60: 44-55 https://doi.org/10.1093/toxsci/60.1.44
  9. Boulanger B, Peck AM, Schnoor JL and Hornbuckle KC. Mass budget of perfluorooctane surfactants in Lake Ontario, Environ Sci Technol 2005; 39: 74-79 https://doi.org/10.1021/es049044o
  10. Boulanger B, Vargo J, Schnoor JL and Hornbuckle KC. Detection of perfluorooctane surfactants in Great Lakes water, Environ Sci Technol 2004; 38(15): 4064-4070 https://doi.org/10.1021/es0496975
  11. Brace NO. Long chain alkanoic and alkenoic acids with perfluoroalkyl terminal segments, J Org Chem 1962; 27: 4491-4498 https://doi.org/10.1021/jo01059a090
  12. Burris JM, Lundberg JK, Olsen G, Simpson C and Mandel J. Interim Report No. 2, Determination of Serum Half- Lives of Several Fluorochemicals; U.S.EPA Public Docket; 3M: St. Paul, MN, 2002
  13. Butt CM, Muir DCG, Stirling I, Kwan M and Mabury SA. Rapid response of arctic ringed seals to changes in perfluoroalkyl production, Environ Sci Technol 2007; 41 (1): 42-49 https://doi.org/10.1021/es061267m
  14. CEMN. Canadian Environmental Modelling Network-Newsletter (annual parterners' meeting). Webster E. Ed., 2006; 2007; 2008
  15. Conder JM, Hoke RA, de Wolf W, Russel MH and Buck RC. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds, Environ Sci Technol 2008; 42(4): 995-1003 https://doi.org/10.1021/es070895g
  16. D'Eon JC and Mabury SA. Production of perfluorinated caboxylic acids (PFCAs) from the biotransformation of polyfluoroalkyl phosphate surfactants (PAPS): Exploring routes of human contamination, Environ Sci Technol 2007; 41: 4799-4805 https://doi.org/10.1021/es070126x
  17. D'Eon J, Hurley MD, Wallington TJ and Mabury SA. Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, $C_4F_9SO_2N(CH_3)CH_2CH_2OH$: Kinetics and mechanism of reaction with OH, Environ Sci Technol 2006; 40: 1862-1868 https://doi.org/10.1021/es0520767
  18. Davis KL, Aucoin MD, Larsen BS, Kaiser MA and Hartten AS. Transport of ammonium perfluorooctanoate in environmental media near a fluoropolymer manufacturing facility, Chemosphere 2007; 67: 2011-2019 https://doi.org/10.1016/j.chemosphere.2006.11.049
  19. De Silva AO and Mabury SA. Isolating isomers of perfluorocarboxylates in polar bears (Ursus maritimus) from two geographical locations, Environ Sci Technol 2004; 38: 6538-6545 https://doi.org/10.1021/es049296p
  20. de Vijver K, Hoff PT, Das K, Van Dongen W, Esmans EL, Jauniaux T, Bouquegneau J-M, Blust R and de Coen W. Perfluorinated chemicals infiltrate ocean waters: link between exposure levels and stable isotope ratios in marine mammals, Environ Sci Technol 2003b; 37: 5545-5550 https://doi.org/10.1021/es0345975
  21. de Vijver KIV, Hoff PT, Das K, Dongen WV, Esmans EL, Jauniaux T, Bouquesgnea J-M, Blust R and de Coen WM. Perfluorinated chemicals infiltrate ocean waters: link between expsoure levels and stable isotope ratios in marine mammals, Environ Sci Technol 2003a; 37: 5545-5550 https://doi.org/10.1021/es0345975
  22. de Vijver KIV., Hoff PT., Dongen WV., Esmans EL., Blust, R. and de Coen WM Exposure patterns of perfluorooctane sulfonate in aquatic invertebrates from the western scheldt estuary and the southern north sea Environ. Toxicol Chem 2003b; 22(9): 2037-2041 https://doi.org/10.1897/02-385
  23. de Vijver, KI, Hoff PT, Van Dongen W, Esmans EL, Blust R and De Coen WM. Exposure patterns of perfluorooctane sulfonate in aquatic invertebrates from the Western Scheldt estuary and the southern North Sea, Environ Toxicol Chem 2003a; 22: 2037-2041 https://doi.org/10.1897/02-385
  24. Dinglasan-Panlilio MJA and Mabury SA. Significant residual fluorinated alcohols present in various fluorinated materials, Environ Sci Technol 2006; 40: 1447-1453 https://doi.org/10.1021/es051619+
  25. Dinglasan MJA, Ye Y, Edwards EA and Mabury SA. Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids, Environ Sci Technol 2004; 38: 2857-2864 https://doi.org/10.1021/es0350177
  26. duPont. Adsorption/Desorption of Ammonium Perfluorooctanoate to Soil (OECD 106); E.I. du Pont de Nemours and Company: Wilmington, DE, 2003, U.S. Environmental Protection Agency Docket OPPT-2003-0012-040
  27. Ellis DA, Mabury SA, Martin JW and Muir DCG. Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature 2001; 412(19): 321-324 https://doi.org/10.1038/35085548
  28. Ellis DA, Martin JW, De Silva AO, Mabury SA, Hurley MD, Sulbaek-Andersen MP and Wallington TJ. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids, Environ Sci Technol 2004; 38: 3316-3321 https://doi.org/10.1021/es049860w
  29. Ellis DA, Martin JW, Mabury SA, Hurley MD, Sulbaek- Andersen MP and Wallington TJ. Atmospheric lifetime of fluorotelomer alcohols, Environ Sci Technol 2003; 37: 3816-3820 https://doi.org/10.1021/es034136j
  30. ES & T Online News: PFOA in People, May 23, 2007
  31. Falandysz J, Taniyasu S, Gulkowska A, Yamashita N and Schulte-Oehlmann U. Is fish a major source of fluorinated surfactants and repellents in humans living on the Baltic coast?, Environ Sci Technol 2006; 40: 748-751 https://doi.org/10.1021/es051799n
  32. Footitt A, Nwaogu TA and Brooke D. Risk reduction strategy and analysis of advantage and drawbacks for perfluorooctane sulphonate (PFOS). Final Report for Dept. of Environment, Food and Rural Affairs & the Environment Agency for England and Wales. 2004, Page A4-3
  33. Franklin J. Screening assessment of the potential for long range atmospheric transport of perfluorooctanoic acid. 2002, Solvay Research and Technology
  34. Gauthier SA and Mabury SA. Aqueous photolysis of 8 : 2 Fluorotelomer Alcohol, Environ Toxicol Chem 2005; 24: 1837-1846 https://doi.org/10.1897/04-591R.1
  35. Giesy JP and Kannan K. Global distribution of Perfluorooctane Sulfonate in Wildlife, Environ Sci Technol 2001; 35: 1339-1342 https://doi.org/10.1021/es001834k
  36. Giesy JP and Kannan K. Perfluorochemical surfactants in the Environment, Environ Sci Technol 2002; 36(7): 146A-152A https://doi.org/10.1021/es010947g
  37. Goss K-U. The pKa values of PFOA and other highly fluorinated carboxylic acids, Environ Sci Technol 2008; 42(2): 456-458 https://doi.org/10.1021/es702192c
  38. Hansen KJ, Johnson HO, Eldridge JS, Butenhoff JL and Dick LA. Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River, Environ Sci Technol 2002; 36: 1681-1685 https://doi.org/10.1021/es010780r
  39. Harada K, Nakanishi S, Saito N, Tsutsui T and Koizumi A. Airborne perfluorocotanoate may be a substantial source contamination in Kyoto Area, Japan, Bull Environ Contam Toxicol 2005a; 74: 64-69 https://doi.org/10.1007/s00128-004-0548-0
  40. Harada K, Inoue K, Morikawa A, Yoshinaga T, Saito N and Koizumi A. Renal clearance of perfluorooctane sulfonate and perfluorooctanoate in humans and their species- specific excretion, Environ Res 2005b; 99: 253-261 https://doi.org/10.1016/j.envres.2004.12.003
  41. Harada K, Nakanishi S, Sasaki K, Furuyama K, Nakayama S, Saito N, Yamakawa K, Tsutsui T and Koizumi A. Particle size distribution and respiratory deposition estimates of airborne perfluorooctanoate and perfluorooctanesulfonate in Kyoto Area, Japan, Bull Environ Contam Toxicol 2006; 76: 306-310 https://doi.org/10.1007/s00128-006-0922-1
  42. Harada K, Saito N, Sasaki K, Inoue K and Koizumi A. Perfluorooctane sulfonate contamination of drinking water in the Tama River, Japan: Estimated effects on resident serum levels, Bull Environ Contam Toxicol 2003; 71: 31-36 https://doi.org/10.1007/s00128-003-0126-x
  43. Higgins CP and Luthy RG. Modeling sorption of anionic surfactants onto sediment materials: An a priori approach for perfluoroalkyl surfactants and linear alkylbenzene sulfonates, Environ Sci Technol 2007; 41: 3254-3261 https://doi.org/10.1021/es062449j
  44. Higgins CP and Luthy RG. Sorption of perfluorinated surfactants on sediment, Environ Sci Technol 2006; 40:7251-7256 https://doi.org/10.1021/es061000n
  45. Higgins CP, Field JA, Criddle CS and Luthy RG. Quantitative determination of perfluorochemicals in sediments and domestic sludge, Environ Sci Technol 2005; 31(19): 3946-3956
  46. Holmström K and Berger U. Tissue distribution of perfluorinated surfactants in common Guillemot (Uria aalge) from the Baltic Sea, Environ Sci Technol 2008. (in press)
  47. Holmström K, Järnberg U and Bignert A. Temporal trends of PFOS and PFOA in Guillemot eggs from the Baltic Sea, 1968-2003, Environ Sci Technol 2005; 39: 80-84 https://doi.org/10.1021/es049257d
  48. Holzer J, Midasch O, Rauchfuss K, Kraft M, Reupert R, Angerer J, Kleeschulte P, Marschall N and Wilhelm M. Biomonitoring of perfluorinated compounds in children and adults exposed to perfluorooctanote-contaminated drinking water, Envrion Health Persp 2008; 116(5): 651-657 https://doi.org/10.1289/ehp.11064
  49. Hori H, Hayakawa E, Einaga H, Kutsuna S, Koike K, Ibusuki T, Kiatagawa H, Arakawa R. Decomposition of environmentally persistent perfluooctanoic acid in water by photochemical approaches, Environ Sci Technol 2004; 38: 6118-6124 https://doi.org/10.1021/es049719n
  50. Houde M, Martin JW, Letcher RJ, Solomon KR and Muir DCG. Biological monitoring of polyfluoroalkyl substances: A review, Environ Sci Technol 2006; 40(11): 3463-3473 https://doi.org/10.1021/es052580b
  51. Houde M, Wells RS, Fair PA, Bossart GD, Hohn AA, Rowles TK, Sweeney JC, Solomon KR and Muir DCG. Polyfluoroalkyl compounds in free-ranging bottlenose dolphins (Tursiops truncatus) from the Gulf of Mexico and the Atlantic Ocean, Environ Sci Technol 2005; 39: 6591-6598 https://doi.org/10.1021/es0506556
  52. Hurley MD, Wallington TJ, Sulback-Andersen MP, Ellis DA, Martin JW and Mabury SA. Atmospheric chemistry of fluorinated alcohols: Reaction with Cl atoms and OH radicals and atmospheric lifetimes, J Phys Chem 2004; 108: 1973-1979 https://doi.org/10.1021/jp0373088
  53. Ishibashi H, Iwata H, Kim E-Y, Tao L, Kannan K, Amano M, Miyazaki N, Tanabe S, Batoeve V and Petrov EA Contamination and effects of perfluorochemicals in Baikal seal (Pusa sibirica). 1. Residue level, tissue distribution, and temporal trend, Environ Sci Technol 2008, (in press)
  54. Jahnke A, Ahrens L, Ebinghaus R and Temme C. Urban versus Remote air concentrations of fluorotelomer alcohols and other polyfluorinated alkyl substances in Germany, Environ Sci Technol 2007b; 41: 745-752 https://doi.org/10.1021/es0619861
  55. Jahnke A, Berger U, Ebinghaus R and Temme C. Latitude gradient of airborne polyfluorinated alkyl substances in the marine atmosphere between Germany and South Africa ($53^{\circ}N-33^{\circ}S$), Environ Sci Technol 2007a; 41(9): 3055-3061 https://doi.org/10.1021/es062389h
  56. Johnson RL, Anschutz AJ, Smolen JM, Simcik MF and Penn RL. The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces, J Chem Eng Data 2007; 52: 1165-1170 https://doi.org/10.1021/je060285g
  57. Jones PD, Hu W, Coen WD, Newsted JL and Giesy JP. Binding of perfluorinated fatty acids to serum proteins, Environ Toxicol Chem 2003; 22: 2639-2649 https://doi.org/10.1897/02-553
  58. Ju X, Jin Y, Sasaki K and Saito N. Perfluorinated surfactants in surface, subsurface water and microlayer from Dalian coastal waters in China, Environ Sci Technol 2008; 42(10): 3538-3542 https://doi.org/10.1021/es703006d
  59. Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, Ali Mohd MA, Olivero J, van Wouwe N, Yang JH and Aldous KM. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries, Environ Sci Technol 2004; 38: 4489-4495 https://doi.org/10.1021/es0493446
  60. Kannan K, Newsted J, Halbrook RS, Giesy JP. Perfluorooctanesulfonate and related fluorinated hydrocarbons in mink and river otters from the United States, Environ Sci Technol 2002; 36: 2566-2571 https://doi.org/10.1021/es0205028
  61. Kannan K, Tao L, Sincliar E, Pastva SD, Jude DJ and Giesy JP. Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain, Arch Environ Contam Toxicol 2005; 48: 559-566 https://doi.org/10.1007/s00244-004-0133-x
  62. Kim S-K, Khim JS, Lee K-T, Giesy JP, Kannan K, Lee D-S, Koh C-H. Chapter 2. Emission, Contamination and Exposure, Fate and Transport, and National Management Strategy of Persistent Organic Pollutants in South Korea. Developments in Environmental Science, Volume 7. A. Li, S. Tanabe, G. Jiang, J.P. Giesy and P.K.S. Lam Eds., Elsevier Ltd., 2007, pp. 31-157
  63. Kim SK and Kannan K. Inter-chemical and inter-media comparison on distribution of PFCAs and PFAS in multimedia environments. 29th SETAC World Congress meeting, August 3-8, 2008, Sidney, Austrailia
  64. Kim SK and Kannan K. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes, Environ Sci Technol 2007; 41: 8328-8334 https://doi.org/10.1021/es072107t
  65. Kissa, E. Fluorinated Surfactants and Repellents, 2nd ed.; Vol. 97 in Surfactant Science Series; Marcel Dekker: NewYork, 2001
  66. Lau C, Butenhoff JL and Rogers JM. The developmental toxicity of perfluoroalkyl acids and their derivatives, Toxicol Appl Pharmacol 2004; 198: 231-241 https://doi.org/10.1016/j.taap.2003.11.031
  67. Lei YD, Wania F, Mathers D and Mabury SA. Determination of vapor pressures, octanol-air, water-air partition coefficients for polyfluorinated sulfonamide, sulfonamidoethanols, and telomere alcohols, J Chem Eng Data 2004; 49: 1013-1022 https://doi.org/10.1021/je049949h
  68. Liu J and Lee L. Solubility and sorption by soils of 8 : 2 fluorotelomer alcohol in water and cosolvent systems, Environ Sci Technol 2005; 39: 7535-7540 https://doi.org/10.1021/es051125c
  69. Loewen M, Halldorson T, Wang F and Tomy G. Fluorotelomer carboxylic acids and PFOS in rainwater from an Urban center in Canada, Environ Sci Technol 2005; 39: 2944-2951 https://doi.org/10.1021/es048635b
  70. Loewen M, Wania F, Wang F and Tomy G. Altitudinal transect of atmospheric and aqueous flurinated organic compounds in western Canada, Environ Sci Technol 2008; 42(7): 2374-2379 https://doi.org/10.1021/es702276c
  71. Martin JW, Ellis DA, Mabury SA, Hurley MD and Wallington TJ. Atmospheric chemistry of perfluoroalkanesulfonamides: Kinetic and product studies of the OH radical and Cl atom initiated oxidation of N-ethyl perfluorobutanesulfonamide, Environ Sci Technol 2006; 40: 864-872 https://doi.org/10.1021/es051362f
  72. Martin JW, Mabury SA, Solomon KR and Muir DCG. Bioconcentration and Tissue Distribution of Perfluorinated Acids in Rainbow Trout (Oncorhynchus mykiss), Environ Toxicol Chem 2003; 22: 196-204 https://doi.org/10.1897/1551-5028(2003)022<0196:BATDOP>2.0.CO;2
  73. Martin JW, Smithwick MM, Braune BM, Hoekstra PF, Muir DCG and Mabury SA. Identification of long-chain perfluorinated acids in biota from the Canadian Actic, Environ Sci Technol 2004; 38: 373-380 https://doi.org/10.1021/es034727+
  74. Martin JW, Whittle DM, Muir DCG and Mabury SA. Perfluoroalkyl contaminants in a food web from Lake Ontario, Environ Sci Technol 2004; 38: 5379-5385 https://doi.org/10.1021/es049331s
  75. McLachlan M, Holmstrom K, Durberger M. Riverine discharge of perfluorinated carboxylates from the European Continent, Environ Sci Technol 2007; 41(21): 7260-7265 https://doi.org/10.1021/es071471p
  76. McMurdo CJ, Ellis DA, Webster E, Butler J, Christensen RD and Reid LK. Aerosol enrichment of the surfactant PFO and mediation of the water-air transport of gaseous PFOA, Environ Sci Technol 2008; 42: 3969-3974 https://doi.org/10.1021/es7032026
  77. Moody CA, Martin JW, Kwan WC, Muir DCG and Mabury SA. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek, Environ Sci Technol 2002; 36(4): 545-551 https://doi.org/10.1021/es011001+
  78. Nakata H, Kannan K, Nasu T, Cho H-S, Sinclair E, Takemura A. Perfluorinated contaminants in sediments and aquatic organisms collected from shallow water and tidal flat areas of the Ariake Sea, Japan: Environmental fate of perfluorooctane sulfonate in aquatic ecosystems, Environ Sci Technol 2006; 40: 4916-4921 https://doi.org/10.1021/es0603195
  79. OECD. OECD Workshop on Perfluorocarboxylic acids (PFCAs) and Precursors. 20-22 November 2006, Stockholm, Sweden
  80. Prevedouros K, Cousins IT, Buck RC and Korzeniowski SH. Source, fate and transport of perfluorocarboxylates, Environ Sci Technol 2006; 40: 32-44 https://doi.org/10.1021/es0512475
  81. Rostkowski P, Yamashita N, So IMK, Taniyasu S, Lam PKS, Falandysz J, Lee KT, Kim SK, Khim JS, Im SH, Newsted JL, Jones PD, Kannan K and Giesy JP. Perfluorinated compounds in streams of the shihwa industrial zone and lake shihwa, south Korea, Environ Toxicol Chem 2006; 25(9): 2374-2380 https://doi.org/10.1897/05-627R.1
  82. Russell M, Berti W, Szostek B and Buck RC. Investigation of the biodegradation potential of a fluoroacrylate polymer product in aerobic soils, Environ Sci Technol 2008; 42(3): 800-807 https://doi.org/10.1021/es0710499
  83. Saito N, Harada K, Inoue K, Sasaki K, Yoshinaga T and Koizumi A. Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan, J Occup Health 2004; 46: 49-59 https://doi.org/10.1539/joh.46.49
  84. Saito N, Sasaki K, Nakatome K, Harada K, Yoshinaga T and Koizumi A. Perfluorocotane sulfonate concentrations in surface water in Japan, Arch Environ Contam Toxicol 2003; 45: 149-158 https://doi.org/10.1007/s00244-003-0163-9
  85. Schenker U, Scheringer M, MacLeod M, Martin JW, Cousins IT and Hungerbuhler K, Contribution of volatilte precursor sbustantces to the flux of perfluorooctanoate to the Arctic, Environ Sci Technol 2008; 41(10): 3710-3716
  86. Schultz MM, Barofsky DF and Field JA. Quantitative determination of fluorinated alkyl substances by large-volume -injection liquid chromatography tandem mass spectrometry- characterization of municipal wastewaters, Environ Sci Technol 2006; 40(1): 289-295 https://doi.org/10.1021/es051381p
  87. Schwarzenbach RP, Gschwend PM and Imboden DM. Environmental Organic Chemistry; 2ND edition, John Wiley & Sons, Hoboken, NJ, 2002
  88. Scott BF, Spencer C, Mabury SA and Muir DCG. Poly and perfluorinated carboxylates in North American Precipitation, Environ Sci Technol 2006; 40: 7167-7174 https://doi.org/10.1021/es061403n
  89. Sheninfeld JH. Atmospheric Chemistry & Physics of Air pollution, Willey, NY, 1996
  90. Shoeib M, Harner T and Vlahos P. Perfluorinated chemicals in the arctic atmosphere, Environ Sci Technol 2006; 40: 7577-7583 https://doi.org/10.1021/es0618999
  91. Shoeib M, Harner T, Wilford BH, Jones KC and Zhu J. Perfluorinated sulfonamides in indoor and outdoor air and indoor dust: occurrence, partitioning, and human exposure, Environ Sci Technol 2005; 39: 6599-6606 https://doi.org/10.1021/es048340y
  92. Simcik MF and Dorweiler KJ. Ratio of perfluorochemical concentrations as a tracer of atmospheric deposition to surface waters, Environ Sci Technol 2005; 39: 8678-8683 https://doi.org/10.1021/es0511218
  93. Simcik MF. Global transport and fate of perfluorochemicals. J Environ Monit 2005; 7: 759-763 https://doi.org/10.1039/b509482h
  94. Simons JH. Electrochemical Process for the Production of Fluorocarbons, J Electrochem Soc 1949; 95: 47-59 https://doi.org/10.1149/1.2776733
  95. Sinclair E and Kannan K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants, Environ Sci Technol 2006; 40(5): 1408-1414 https://doi.org/10.1021/es051798v
  96. Sinclair E, Kim S-K, Akinleye HB and Kannan K. Quantitation of gas-phase perfluoroalkyl surfactants and fluorotelomer alcohols released from nonstick cookware and microwave popcorn bags, Environ Sci Technol 2007; 41: 1180-1185 https://doi.org/10.1021/es062377w
  97. Sinclair E, Mayak DT, Roblee K, Yamashita N and Kannan, K. Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State, Arch Environ Contam Toxicol 2006; 50: 398-410 https://doi.org/10.1007/s00244-005-1188-z
  98. Skutlarek D, Exner M and Farber H. Perfluorinated surfactants in surface and drinking waters, Environ Sci Pollut Res 2006; 13(5): 299-307 https://doi.org/10.1065/espr2006.07.326
  99. Smithwick M, Norstrom RJ, Mabury SA, Solomon K, Evans TJ, Stirling I, Taylor MK and Muir DCG. Temporal trends of perfluoroalkyl contaminants in polar bears (Ursus maritimus) from two locations in the North American Arctic, 1972-2002, Environ Sci Tehcnol 2006; 40: 1139-1143 https://doi.org/10.1021/es051750h
  100. Spliethoff HM, Tao L, Shaver SM, Aldous KM, Pass KA, Kannan K and Eadon GA. Use of newborn screening program blood spots for exposure assessment: Declining levels of perfluorinated compounds in New York State infants, Environ Sci Technol 2008; 42: 5361-5367 https://doi.org/10.1021/es8006244
  101. Stock NL, Furdui VI, Muir DCG and Mabury SA. Perfluoroalkyl contaminants in the Canadian Arctic: Evidence of atmospheric transport and local contamination, Environ Sci Technol 2007; 41(10): 3529-3536 https://doi.org/10.1021/es062709x
  102. Stock NL, Lau FK, Ellis DA, Martin JW, Muir DCG and Mabury SA. Polyfluorinated telomere alcohols and sulfonamides in the North American Troposphere, Environ Sci Technol 2004; 38: 991-996 https://doi.org/10.1021/es034644t
  103. Sulbaek-Andersen MP, Hurley MD, Wallington TJ, Ball JC, Martin JW, Ellis DA, Mabury SA and Nielsen OJ. Atmospheric chemistry of $C_2F_5CHO$: reaction with Cl atmos and OH radicals, IR spectrum of $C_2F_5C(O)O_2NO_2$, Chem Phys Lett 2003; 379: 28-36 https://doi.org/10.1016/j.cplett.2003.08.004
  104. Taniyasu S, Kannan K, Yeung LWY, Kwok KY, Lam PKS and Yamashita N. Analysis of trifluoroacetic acid and other short-chain perfluorinated acids (C2-C4) in precipitation by liquid chromatography-tandem mass spectrometry: comparison to patterns of long-chain perfluorinated acids (C5-C18), Anal Chimica Acta 2008; 619: 221-230 https://doi.org/10.1016/j.aca.2008.04.064
  105. Tittlemier S, Peper K, Seymour C, Moisey J, Bronson R, Cao X-L and Dabeka RW. Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonae via consumption of meat, fish, fast foods, and food items prepared in their packaging, J Agric Food Chem 2007; 55: 3203-3210 https://doi.org/10.1021/jf0634045
  106. Upham BL, Deocampo ND, Wurl B and Trosko JE. Inhibition of gap junctional intercellular communication by perfluorinated fatty acids is dependent on the chain length of the fluorinated tail, Int J Cancer 1998; 78: 491-495 https://doi.org/10.1002/(SICI)1097-0215(19981109)78:4<491::AID-IJC16>3.0.CO;2-9
  107. USEPA. Preliminary Risk Assessment of the Developmental Toxicity Associated with Exposure to Perfluorooctanoic Acid and its Salts; Office of Pollution Prevention and Toxics, Risk Assessment Division, U.S. EPA: Washington, DC, 2005
  108. USEPA. Revised draft: hazard assessment of perfluorooctanoic acid and its salts. Office of Pollution Prevention and Toxics, Risk Assessment Division. EPA Docket no. AR226-136. 2002
  109. Verreault J, Berger U and Gabrielsen GW. Trends of perfluorinated alkyl substances in herring gull eggs from two coastal colonies in Northern Norway: 1983-2003, Environ Sci Technol 2007; 41(19): 6671-6677 https://doi.org/10.1021/es070723j
  110. Wallington TJ, Hurley MD, Xia J, Wuebbles DJ, Sillman S, Ito A, Penner JE, Ellis DA, Martin J, Mabury SA, Nielsen OJ and Sulbaek-Andersen MP. Formation of $C_7F_{15}COOH$ (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8 : 2 fluorotelomer alcohol, Environ Sci Technol 2006; 40: 924-930 https://doi.org/10.1021/es051858x
  111. Wang N, Szostek B, Buck RC, Folsom PW, Sulecki LM, Capka V, Berti WR and Gannon JT. Fluorotelomer alcohol biodegradation-direct evidence that perfluorinated carbon chains breakdown, Environ Sci Technol 2005b; 39: 7516-7528 https://doi.org/10.1021/es0506760
  112. Wang N, Szostek B, Folsom PW, Sulecki LM, Capka V, Buck RC, Berti WR and Gannon JT. Aerobic biotransformation of $^{14}C$-labeled 8-2 telomer B alcohol by activated sludge from a domestic sewage treatment plant, Environ Sci Technol 2005a; 39: 531-538 https://doi.org/10.1021/es049466y
  113. Wania F. A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean, Environ Sci Technol 2007; 41: 4529-4535 https://doi.org/10.1021/es070124c
  114. Weihe P, Kato K, Calafat AM, Nielsen F, Wanigatunga AA, Needham LL and Grandjean P. Serum concentrations of polyfluoroalkyl compounds in faroese whale meat consumers. Environ Sci Technol 2008. (in press)
  115. Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G and Gamo T. A global survey of Perfluorinated acids in Oceans, Mar Pollut Bull 2005; 51: 658-668 https://doi.org/10.1016/j.marpolbul.2005.04.026
  116. Yamashita N, Taniyasu S, Petrick G, Wei S, Gamo T, Lam PKS and Kannan K. Perfluorinated acids as novel chemical tracers of global circulation of ocean waters, Chemosphere 2008; 70: 1247-1255 https://doi.org/10.1016/j.chemosphere.2007.07.079
  117. Yoo H, Kannan K, Kim S-K, Newsted JL and Giesy JP. Perfluoroalkyl acids in the Egg Yolk of birds from Lake Shihwa, Korea, Environ Sci Technol 2008; 42: 5821-5827 https://doi.org/10.1021/es800447d
  118. Young CJ, Furdui VI, Franklin J, Koerner R, Muir DCG and Mabury SA. Perfluorinated acids in Arctic snow: New evidence for atmospheric formation, Environ Sci Technol 2007; 41(10): 3455-3461 https://doi.org/10.1021/es0626234
  119. Zushi Y, Takeda T and Masunaga S. Existence of nonpoint source of perfluorinated compounds and their loads in the Tsurumi river basin, Japan, Chemosphere 2008; 71: 1566-1573 https://doi.org/10.1016/j.chemosphere.2007.11.055