DOI QR코드

DOI QR Code

Effect of Atmospheric Plasma Treatments on Mechanical Properties of VGCF/Epoxy

  • Khuyen, Nguyen Quang (Composite Materials Lab, Korea Institute of Machinery & Materials (KIMM)) ;
  • Kim, Jin-Bong (Composite Materials Lab, Korea Institute of Machinery & Materials (KIMM)) ;
  • Kim, Byung-Sun (Composite Materials Lab, Korea Institute of Machinery & Materials (KIMM)) ;
  • Lee, Soo (Department of Chemical Engineering, Changwon National University)
  • Published : 2008.06.01

Abstract

Vapor grown carbon fibers (VGCF) were treated with atmospheric plasma enhancing the surface area in order to improve the bonding to the matrix in epoxy composites. The changes in the mechanical properties of VGCF/epoxy nanocompostes, such as tensile modulus and tensile strength were investigated in this study. VGCF with and without atmospheric plasma treatment for surface modification were used in this investigation. The interdependence of these properties on the VGCF contents and interfacial bonding between VGCF/epoxy matrix were discussed. The mechanical properties of atmospheric plasma treated (APT) VGCF/epoxy were compared with raw VGCF/epoxy. The tensile strength of APT VGCF/epoxy nanocomposites showed higher value than that of raw VGCF. The tensile strength was increased with atmospheric plasma treatment, due to better adhesion at VGCF/epoxy interface. The tensile modulus of raw VGCF and APT VGCF/epoxy matrix were of the similar value. The dispersion of the VGCF was investigated by scanning electron microscopy (SEM), SEM micrographs showed an excellent dispersion of VGCF in epoxy matrix by ultrasonic method.

Keywords

References

  1. J.-C. Lin, L. C. Chang, M. H. Nien and H. L. Ho, Compos. Struct. 74, 30 (2006) https://doi.org/10.1016/j.compstruct.2005.03.006
  2. F. W. J. Van Hattum and C. A. Bernardo, Polym. Compos. 20, 683 (1999) https://doi.org/10.1002/pc.10391
  3. H.Miyagawa, M. J. Rich and L. T. Drzal, Thermo Chimica Acta 442, 67 (2006) https://doi.org/10.1016/j.tca.2006.01.016
  4. K. Lozano and V. Diaz, J. Rheofuture 19, 902 (2002)
  5. A. Chatterjee and B. L. Deopura, Composites 37, 813 (2005)
  6. J. Zeng, B. Saltysiak, W. S. Johnson, D. A. Schiraldy and S. Kumar, Composites, Part B 35, 173 (2004)
  7. J. M. Park, D. S. Kim, S. J. Kim, P. G. Kim, D. J. Yoon and K. L. DeVries, Composites, Part B 30, 330 (2006)
  8. R. Suchentrunk, H. J. Fuesser, G. Staudigl, D. Jonke and M. Meyer, Surf. Coatings Technol. 112, 351 (1999) https://doi.org/10.1016/S0257-8972(98)00833-0
  9. H. Miyagawa and L. T. Drzal, Composite 36, 1440 (2005) https://doi.org/10.1016/j.compositesa.2005.01.027
  10. A. Fukunaga, T. Komami, S. Ueda and M. Nagumo, Carbon 37, 1087 (1999) https://doi.org/10.1016/S0008-6223(98)00308-X
  11. V. Bruse, M. Heintze, W. Brandl, G. Marginean and H. Bubert, Diamond and Related Materials 13, 1177 (2004) https://doi.org/10.1016/j.diamond.2003.10.061
  12. D. Pappas, A. Bujanda, J. D. Demaree, J. K. Hirvonen, W. Kosok, R. Jensen and S. McKnight, Surf. Coatings Technol. 201, 4384 (2006) https://doi.org/10.1016/j.surfcoat.2006.08.068
  13. Y. Kusano, H. Mortensen, B. Stenum, S. Goutianos, S. Mitra, A. Ghanbari-Siahkali, P. Kingshott, B. F. Sorensen and H. Bindslev, Intl J. Adhes. Adhes. 27, 402 (2006)
  14. S. Trigwell, A. C. Schuerger, C. R. Buhler and C. I. Calle, Lun. Planet. Sci. 37, 2257 (2006)
  15. Showa Denko, Tokyo, Japan, Typical Properties of VGCF. www.sdkc.com
  16. Kukdo, Seoul, Korea, Catalog Epoxy Resin and Hardener. www.kukdo.com