References
- S. S. Ray and M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28, 1539-1641 (2003) https://doi.org/10.1016/j.progpolymsci.2003.08.002
- D. G. Seong, T. J. Kang and J. R. Youn, Rheological characterization of polymer based nanocomposites with different nanoscale dispersions, e-Polymers 005, 1-14 (2005)
- S. K. Lee, D. G. Seong and J. R. Youn, Degradation and rheological properties of biodegradable nanocomposites prepared by melt intercalation method, Fiber. Polym. 6, 289-296 (2005) https://doi.org/10.1007/BF02875664
- M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki and A. Okada, Preparation and mechanical properties of polypropylene-clay hybrid, Macromolecules 30, 6333-6338 (1997) https://doi.org/10.1021/ma961786h
- R. Krishnamoorti and K. Yurekli, Rheology of polymer layered silicate nanocomposites, Curr. Opin. Coll. Interf. Sci. 6, 464-470 (2001) https://doi.org/10.1016/S1359-0294(01)00121-2
- Y. H. Hyun, S. T. Lim, H. J. Choi and M. S. Jhon, Rheology of poly(ethylene oxide)/organoclay nanocomposites, Macromolecules 34, 8084-8093 (2001) https://doi.org/10.1021/ma002191w
- A. Lele, M. Mackley, G. Galgali and C. J. Ramesh, In situ rheo-x-ray investigation of flow-induced orientation in layered silicate-syndiotactic polypropylene nanocomposite melt, J. Rheol. 46, 1091-1110 (2002) https://doi.org/10.1122/1.1498284
- A. D. Gotsis and B. L. F. Zeevenhoven, Effect of long branches on the rheology of polypropylene, J. Rheol. 48, 895-914 (2004) https://doi.org/10.1122/1.1764823
- A. S. Sarvestani and C. R. Picu, Network model for the viscoelastic behavior of polymer nanocomposites, Polymer 45, 7779-7790 (2004) https://doi.org/10.1016/j.polymer.2004.08.060
- A. S. Sarvestani and C. R. Picu, A frictional molecular model for the viscoelasticity of entangled polymer nanocomposites, Rheol. Acta. 45, 132-141 (2005) https://doi.org/10.1007/s00397-005-0002-1
- V. P. Toshchevikov, A. Blumen and Y. Y. Gotlib, Dynamics of polymer networks with strong differences in the viscose characteristics of their crosslinks and strand, Macromol. Theory Simul. 16, 359-377 (2007) https://doi.org/10.1002/mats.200600081
- A. S. Sarvestani, X. He and E. Jabbari, Viscoelastic characterization and modeling of gelation kinetics of injectable in situ crosslinkable poly(lactide-ethylene oxide-fumarate) hydrogels, Biomacromolecules 8, 406-412 (2007) https://doi.org/10.1021/bm060648p
- A. Nishioka, T. Takahashi, Y. Masubuchi, J. Takimoto and K. Koyama, Description of uniaxial, biaxial, and planar elongational viscosities of polystyrene melt by the K-BKZ model, J. Non-Newtonian Fluid Mech. 89, 287-301 (2000) https://doi.org/10.1016/S0377-0257(99)00047-6
- F. Erchiqui, Thermodynamic approach of inflation process of K-BKZ polymer sheet with respect to thermoforming, Polym. Engng. Sci. 45, 1319-1335 (2005) https://doi.org/10.1002/pen.20360
- J. M. Madiedo, J. M. Franco, V. Valencia and C. Gallegos, Modeling of the non-linear rheological behavior of a lubricating grease at low-shear rates, J. Tribol. 122, 590-596 (2000) https://doi.org/10.1115/1.555406
- C. F. Wang and J. L. Kokini, Simulation of the nonlinear rheological properties of gluten using the Wagner constitutive model, J. Rheol. 39, 1465-1482 (1995) https://doi.org/10.1122/1.550611
- J. M. Maia, Theoretical modelling of fluid S1: a comparative study of constitutive models in sample and complex flows, J. Non-Newtonian Fluid Mech. 85, 107-125 (1999) https://doi.org/10.1016/S0377-0257(98)00182-7
- J. Ren and R. Krishnamoorti, Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites, Macromolecules 36, 4443-4451 (2003) https://doi.org/10.1021/ma020412n
- R. I. Tanner, From A to (BK)Z in constitutive relations, J. Rheol. 32, 673-702 (1988) https://doi.org/10.1122/1.549986
- B. Bernstein, E. A. Kearsley and L. J. Zapas, A study of stress relaxation with finite strain, Trans. Soc. Rheol. 7, 391-410 (1963) https://doi.org/10.1122/1.548963
- K. Osaki, On the damping function of shear relaxation modulus for entangled polymers, Rheol. Acta. 32, 429-437 (1993) https://doi.org/10.1007/BF00396173
- H. M. Laun, Description of the non-linear shear behaviour of a low density polyethylene melt by means of an experimentally determined strain dependent memory function, Rheol. Acta. 17, 1-15 (1978) https://doi.org/10.1007/BF01567859
- M. H. Wagner, Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt, Rheol. Acta. 18, 33-50 (1979) https://doi.org/10.1007/BF01515686
- A. C. Papanastasiou, L. E. Scriven and C.W. Macosko, An integral constitutive equation for mixed flows: viscoelastic characterization, J. Rheol. 27, 387-410 (1983) https://doi.org/10.1122/1.549712
- G. Barakos, E. Mitsoulis, C. Tzoganakis and T. Kajiwara, Rheological characterization of controlled-rheology polypropylenes using integral constitutive equations, J. Appl. Polym. Sci. 59, 543-556 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960118)59:3<543::AID-APP21>3.0.CO;2-T
- S. H. Lee, E. Cho and J. R. Youn, Rheological behavior of polypropylene/layered silicate nanocomposites prepared by melt compounding in shear and elongational flows, J. Appl. Polym. Sci. 103, 3506-3513 (2007) https://doi.org/10.1002/app.25204
- J. D. Ferry, Viscoelastic Properties of Polymers. Wiley, New York, USA (1980)
- R. Kotsilkova, Rheology-structure relationship of polymer/layered silicate hybrids, Mech. Time-Depend Mater. 6, 283-300 (2006) https://doi.org/10.1023/A:1016226118991
- J. Ren, A. S. Silva and R. Krishnamoorti, Linear viscoelasticity of disordered polystyrene polyisoprene block copolymer bases layered-silicate nanocomposites, Macromolecules 33, 3739-3746 (2000) https://doi.org/10.1021/ma992091u
- M. T. Islam, M. T. J. Sanchez-Reyes and L. A. Archer, Nonlinear rheology of highly entangled polymer liquids: step shear damping function, J. Rheol. 45, 61-82 (2001) https://doi.org/10.1122/1.1332384
- M. Isaki, M. Takahashi and O. Urakawa, Biaxial damping function of entangled monodisperse polystyrene melts: comparison with theMead-Larson-Doi model, J. Rheol. 47, 1201-1210 (2003) https://doi.org/10.1122/1.1595096
- M. Iza and M. Bousmina, Damping function for narrow and large molecular weight polymers: comparison with the force-balanced network model, Rheol. Acta. 44, 372-378 (2005) https://doi.org/10.1007/s00397-004-0419-y
- M. H. Wagner, S. Kheirandish and O. Hassager, Quantitative prediction of transient and steadystate elongational viscosity of nearly monodisperse polystyrene melts, J. Rheol. 49, 1317-1327 (2005) https://doi.org/10.1122/1.2048741
- M. Sugimoto, Y. Masubuchi, J. Takimoto and K. Koyama, Melt rheology of polypropylene containing small amount of high molecular weight chain I. shear flow, J. Polym. Sci. Pol. Phys. 39, 2692-2704 (2001) https://doi.org/10.1002/polb.10012
- M. H. Wagner and J. Meissner, Network disentanglement and time-dependent flow behaviour of polymer melts, Macromol. Chem. 181, 1533-1550 (1980) https://doi.org/10.1002/macp.1980.021810716
- R. G. Larson, The Structure and Rheology of Complex Fluids. Oxford University Press, New York, USA (1999)
- J. Kasehagen and C. W. Macosko, Nonlinear shear and extensional rheology of long-chain randomly branched polybutadiene, J. Rheol. 42, 1303-1327 (1998) https://doi.org/10.1122/1.550892
- R. Devendra, S. Hatzikiriakos and R. Vogel, Rheology of metallocene polyethylene-based nanocomposites: influence of graft modification, J. Rheol. 50, 415-434 (2006) https://doi.org/10.1122/1.2209090
- X. He, J. Yang, L. Zhu, B. Wang, G. Sun, P. Lv, I. Y. Phang and T. Liu, Morphology and melt rheology of nylon 11/clay nanocomposites, J. Appl. Polym. Sci. 102, 542-549 (2006) https://doi.org/10.1002/app.24281
- C. Valencia, M. C. Sanchez, A. Ciruelos, A. Latorre, J. M. Madiedo and C. Gallegos, Non-linear viscoelasticity modeling of tomato paste products, Food Res. Int. 36, 911-919 (2003) https://doi.org/10.1016/S0963-9969(03)00100-5