DOI QR코드

DOI QR Code

Experimental and Theoretical Study on Shear Flow Behavior of Polypropylene/Layered Silicate Nanocomposites

  • Lee, Seung-Hwan (Department of Materials Science and Engineering, Seoul National University) ;
  • Youn, Jae-Ryoun (Department of Materials Science and Engineering, Seoul National University)
  • Published : 2008.09.01

Abstract

Polypropylene/layered silicate nanocomposites containing maleic anhydride grafted polypropylene were prepared by melt compounding and their rheological behavior was investigated in shear flow. Transient and steady shear flows were simulated numerically by using the K-BKZ integral constitutive equation along with experimentally determined damping functions under dynamic oscillatory and step strain shear flows. Nonlinear shear responses were predicted with the K-BKZ constitutive equation using two different damping functions such as the Wagner and PSM models. It was observed that PP-g-MAH compatibilized PP/layered silicate nanocomposites have stronger and earlier shear thinning and higher steady shear viscosity than pure PP resin or uncompatibilized nanocomposites at low shear rate regions. Strong damping behavior of the PP/layered silicate nanocomposite was predicted under large step shear strain and considered as a result of the strain-induced orientation of the organoclay in the shear flow. Steady shear viscosity of the pure PP and uncompatibilized nanocomposite predicted by the K-BKZ model was in good agreement with the experimental results at all shear rate regions. However, the model was inadequate to predict the steady shear viscosity of PP-g-MAH compatibilized nanocomposites quantitatively because the K-BKZ model overestimates strain-softening damping behavior for PP/layered silicate nanocomposites.

Keywords

References

  1. S. S. Ray and M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28, 1539-1641 (2003) https://doi.org/10.1016/j.progpolymsci.2003.08.002
  2. D. G. Seong, T. J. Kang and J. R. Youn, Rheological characterization of polymer based nanocomposites with different nanoscale dispersions, e-Polymers 005, 1-14 (2005)
  3. S. K. Lee, D. G. Seong and J. R. Youn, Degradation and rheological properties of biodegradable nanocomposites prepared by melt intercalation method, Fiber. Polym. 6, 289-296 (2005) https://doi.org/10.1007/BF02875664
  4. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki and A. Okada, Preparation and mechanical properties of polypropylene-clay hybrid, Macromolecules 30, 6333-6338 (1997) https://doi.org/10.1021/ma961786h
  5. R. Krishnamoorti and K. Yurekli, Rheology of polymer layered silicate nanocomposites, Curr. Opin. Coll. Interf. Sci. 6, 464-470 (2001) https://doi.org/10.1016/S1359-0294(01)00121-2
  6. Y. H. Hyun, S. T. Lim, H. J. Choi and M. S. Jhon, Rheology of poly(ethylene oxide)/organoclay nanocomposites, Macromolecules 34, 8084-8093 (2001) https://doi.org/10.1021/ma002191w
  7. A. Lele, M. Mackley, G. Galgali and C. J. Ramesh, In situ rheo-x-ray investigation of flow-induced orientation in layered silicate-syndiotactic polypropylene nanocomposite melt, J. Rheol. 46, 1091-1110 (2002) https://doi.org/10.1122/1.1498284
  8. A. D. Gotsis and B. L. F. Zeevenhoven, Effect of long branches on the rheology of polypropylene, J. Rheol. 48, 895-914 (2004) https://doi.org/10.1122/1.1764823
  9. A. S. Sarvestani and C. R. Picu, Network model for the viscoelastic behavior of polymer nanocomposites, Polymer 45, 7779-7790 (2004) https://doi.org/10.1016/j.polymer.2004.08.060
  10. A. S. Sarvestani and C. R. Picu, A frictional molecular model for the viscoelasticity of entangled polymer nanocomposites, Rheol. Acta. 45, 132-141 (2005) https://doi.org/10.1007/s00397-005-0002-1
  11. V. P. Toshchevikov, A. Blumen and Y. Y. Gotlib, Dynamics of polymer networks with strong differences in the viscose characteristics of their crosslinks and strand, Macromol. Theory Simul. 16, 359-377 (2007) https://doi.org/10.1002/mats.200600081
  12. A. S. Sarvestani, X. He and E. Jabbari, Viscoelastic characterization and modeling of gelation kinetics of injectable in situ crosslinkable poly(lactide-ethylene oxide-fumarate) hydrogels, Biomacromolecules 8, 406-412 (2007) https://doi.org/10.1021/bm060648p
  13. A. Nishioka, T. Takahashi, Y. Masubuchi, J. Takimoto and K. Koyama, Description of uniaxial, biaxial, and planar elongational viscosities of polystyrene melt by the K-BKZ model, J. Non-Newtonian Fluid Mech. 89, 287-301 (2000) https://doi.org/10.1016/S0377-0257(99)00047-6
  14. F. Erchiqui, Thermodynamic approach of inflation process of K-BKZ polymer sheet with respect to thermoforming, Polym. Engng. Sci. 45, 1319-1335 (2005) https://doi.org/10.1002/pen.20360
  15. J. M. Madiedo, J. M. Franco, V. Valencia and C. Gallegos, Modeling of the non-linear rheological behavior of a lubricating grease at low-shear rates, J. Tribol. 122, 590-596 (2000) https://doi.org/10.1115/1.555406
  16. C. F. Wang and J. L. Kokini, Simulation of the nonlinear rheological properties of gluten using the Wagner constitutive model, J. Rheol. 39, 1465-1482 (1995) https://doi.org/10.1122/1.550611
  17. J. M. Maia, Theoretical modelling of fluid S1: a comparative study of constitutive models in sample and complex flows, J. Non-Newtonian Fluid Mech. 85, 107-125 (1999) https://doi.org/10.1016/S0377-0257(98)00182-7
  18. J. Ren and R. Krishnamoorti, Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites, Macromolecules 36, 4443-4451 (2003) https://doi.org/10.1021/ma020412n
  19. R. I. Tanner, From A to (BK)Z in constitutive relations, J. Rheol. 32, 673-702 (1988) https://doi.org/10.1122/1.549986
  20. B. Bernstein, E. A. Kearsley and L. J. Zapas, A study of stress relaxation with finite strain, Trans. Soc. Rheol. 7, 391-410 (1963) https://doi.org/10.1122/1.548963
  21. K. Osaki, On the damping function of shear relaxation modulus for entangled polymers, Rheol. Acta. 32, 429-437 (1993) https://doi.org/10.1007/BF00396173
  22. H. M. Laun, Description of the non-linear shear behaviour of a low density polyethylene melt by means of an experimentally determined strain dependent memory function, Rheol. Acta. 17, 1-15 (1978) https://doi.org/10.1007/BF01567859
  23. M. H. Wagner, Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt, Rheol. Acta. 18, 33-50 (1979) https://doi.org/10.1007/BF01515686
  24. A. C. Papanastasiou, L. E. Scriven and C.W. Macosko, An integral constitutive equation for mixed flows: viscoelastic characterization, J. Rheol. 27, 387-410 (1983) https://doi.org/10.1122/1.549712
  25. G. Barakos, E. Mitsoulis, C. Tzoganakis and T. Kajiwara, Rheological characterization of controlled-rheology polypropylenes using integral constitutive equations, J. Appl. Polym. Sci. 59, 543-556 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960118)59:3<543::AID-APP21>3.0.CO;2-T
  26. S. H. Lee, E. Cho and J. R. Youn, Rheological behavior of polypropylene/layered silicate nanocomposites prepared by melt compounding in shear and elongational flows, J. Appl. Polym. Sci. 103, 3506-3513 (2007) https://doi.org/10.1002/app.25204
  27. J. D. Ferry, Viscoelastic Properties of Polymers. Wiley, New York, USA (1980)
  28. R. Kotsilkova, Rheology-structure relationship of polymer/layered silicate hybrids, Mech. Time-Depend Mater. 6, 283-300 (2006) https://doi.org/10.1023/A:1016226118991
  29. J. Ren, A. S. Silva and R. Krishnamoorti, Linear viscoelasticity of disordered polystyrene polyisoprene block copolymer bases layered-silicate nanocomposites, Macromolecules 33, 3739-3746 (2000) https://doi.org/10.1021/ma992091u
  30. M. T. Islam, M. T. J. Sanchez-Reyes and L. A. Archer, Nonlinear rheology of highly entangled polymer liquids: step shear damping function, J. Rheol. 45, 61-82 (2001) https://doi.org/10.1122/1.1332384
  31. M. Isaki, M. Takahashi and O. Urakawa, Biaxial damping function of entangled monodisperse polystyrene melts: comparison with theMead-Larson-Doi model, J. Rheol. 47, 1201-1210 (2003) https://doi.org/10.1122/1.1595096
  32. M. Iza and M. Bousmina, Damping function for narrow and large molecular weight polymers: comparison with the force-balanced network model, Rheol. Acta. 44, 372-378 (2005) https://doi.org/10.1007/s00397-004-0419-y
  33. M. H. Wagner, S. Kheirandish and O. Hassager, Quantitative prediction of transient and steadystate elongational viscosity of nearly monodisperse polystyrene melts, J. Rheol. 49, 1317-1327 (2005) https://doi.org/10.1122/1.2048741
  34. M. Sugimoto, Y. Masubuchi, J. Takimoto and K. Koyama, Melt rheology of polypropylene containing small amount of high molecular weight chain I. shear flow, J. Polym. Sci. Pol. Phys. 39, 2692-2704 (2001) https://doi.org/10.1002/polb.10012
  35. M. H. Wagner and J. Meissner, Network disentanglement and time-dependent flow behaviour of polymer melts, Macromol. Chem. 181, 1533-1550 (1980) https://doi.org/10.1002/macp.1980.021810716
  36. R. G. Larson, The Structure and Rheology of Complex Fluids. Oxford University Press, New York, USA (1999)
  37. J. Kasehagen and C. W. Macosko, Nonlinear shear and extensional rheology of long-chain randomly branched polybutadiene, J. Rheol. 42, 1303-1327 (1998) https://doi.org/10.1122/1.550892
  38. R. Devendra, S. Hatzikiriakos and R. Vogel, Rheology of metallocene polyethylene-based nanocomposites: influence of graft modification, J. Rheol. 50, 415-434 (2006) https://doi.org/10.1122/1.2209090
  39. X. He, J. Yang, L. Zhu, B. Wang, G. Sun, P. Lv, I. Y. Phang and T. Liu, Morphology and melt rheology of nylon 11/clay nanocomposites, J. Appl. Polym. Sci. 102, 542-549 (2006) https://doi.org/10.1002/app.24281
  40. C. Valencia, M. C. Sanchez, A. Ciruelos, A. Latorre, J. M. Madiedo and C. Gallegos, Non-linear viscoelasticity modeling of tomato paste products, Food Res. Int. 36, 911-919 (2003) https://doi.org/10.1016/S0963-9969(03)00100-5