Absorption Characteristics of Aqueous Sodium Glycinate Solution with Carbon Dioxide and Its Mechanistic Analysis

Sodium Glycinate 수용액의 CO$_2$ 흡수특성 및 반응 메커니즘 해석

  • Shim, Jae-Goo (Global Environment Group, Korea Electric Power Research Institute(KEPRI)) ;
  • Kim, Jun-Han (Global Environment Group, Korea Electric Power Research Institute(KEPRI)) ;
  • Jang, Kyung-Ryong (Global Environment Group, Korea Electric Power Research Institute(KEPRI))
  • 심재구 (한전전력연구원 지구환경그룹) ;
  • 김준한 (한전전력연구원 지구환경그룹) ;
  • 장경룡 (한전전력연구원 지구환경그룹)
  • Published : 2008.04.30

Abstract

The experiments for separation and recovery of CO$_2$ were conducted by aqueous sodium glycinate solution, which is one of the amino acid salts, as an absorbent of CO$_2$ in this study. Absorption capacities of aqueous MEA and sodium glycinate solution according to partial pressure of CO$_2$ were evaluated by vapor-liquid equilibrium tests of 20 wt% and 30 wt% above-mentioned absorbents, respectively. In addition, the pilot scale(2 t-CO$_2$/day) experiments based on prior results were carried out. As a result, CO$_2$ removal efficiency of aqueous sodium glycinate solution was lower than that of aqueous MEA solution. This phenomenon means that CO$_2$ removal efficiency of aqueous sodium glycinate solution mainly depends on its molecular structure. Consequently, the first application of certain amino acid salt, as an absorbent of CO$_2$, to pilot plant of 2 t-CO$_2$/day scale was carried out in our country.

본 논문에서는 아미노산염의 일종인 글리신산나트륨(sodium glycinate) 수용액을 이산화탄소(CO$_2$) 흡수제로 사용하여 이산화탄소 분리회수 특성평가 실험을 수행하였다. 흡수제와 이산화탄소의 기-액 흡수평형 실험을 통하여 흡수제 농도 20 wt%와 30 wt%에서 글리신산나트륨과 상용 흡수제인 MEA의 분압에 따른 몰부하비(mol loading ratio)를 측정하여 이산화탄소 흡수능을 평가하였다. 또한, 기-액 흡수평형 결과를 바탕으로 2 t-CO$_2$/day 용량의 파일럿플랜트 실험을 수행한 결과, 이산화탄소 탈거가 MEA에 비하여 용이하게 일어나지 않아 상대적으로 낮은 이산화탄소 제거율을 얻었다. 이는 글리신산나트륨 고유의 입체구조에 기인하는 것으로 판단된다. 본 논문은 이산화탄소 흡수제로 아미노산염 계열 흡수제를 이용하여 실제 공정에 적용한 우리나라 최초의 연구결과로서 아미노산염의 흡수제로서의 가능성 파악에 큰 의의가 있다고 할 수 있다.

Keywords

References

  1. IEA, "Energy technology perspectiVes-scenarios & strategies to 2050," IEA Publication(2006)
  2. Seo, H. J., Yu, E. Y., "Carbon nanotubes resulted from the carbon dioxide reforming by catalytic pyrolysis to reduce the greenhouse gas," EnViron. Eng. Res., 7(4), 247-252(2002) https://doi.org/10.4491/eer.2002.7.4.247
  3. Chakma, A. and Tontiwachwuthikul, P., "Designer solVents for energy efficient $CO_2$ separation from flue gas streams," Greenhouse Gas Control Technologies, 35-42 (1999)
  4. NEDO, "地球溫暖化對策技術開發に關する調査," NEDO 平成13年 調査報告書(2002)
  5. Notz, R., Asprion, N., Clausen, I., and Hasse, H., "Selection and pilot plant tests of new absorbents for postcombustion carbon dioxide capture," Chemical Engineering Research and Design, 85(A4), 510-515(2007) https://doi.org/10.1205/cherd06085
  6. 오광중, 이상섭, 최원준, 이재정, 손병현, "MEA/AMP 혼합 흡수제를 이용한 이산화탄소 흡수 및 재생 특성," 대한환경공학회지, 25(5), 609-615(2003) and references cited therein
  7. 김미숙, 최원준, 서종범, 조기철, 김수곤, 오광중, "AMP+ AEPD와 AMP+TIPA 수용액을 이용한 이산화탄소의 흡수 및 재생," 한국대기환경학회지, 23(5), 539-546(2007) and references cited therein https://doi.org/10.5572/KOSAE.2007.23.5.539
  8. Chauhan, R. K., Yoon, S. J., Lee, H., Yoon, J. H., Shim, J. G., Song, G. C., and Eum, H. M., "Solubilities of carbon dioxide in aqueous solutions of triisopropanolamine," Fluid Phase Equilibria, 208, 239-245(2003) https://doi.org/10.1016/S0378-3812(03)00059-1
  9. Park, J. Y., Yoon, S. J., Lee, H., Yoon, J. H., Shim, J. G., Lee, J. K., Min, B. Y., Eum, H. M., and Kang, M. C., "Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol," Fluid Phase Equilbira, 202, 359-366(2002) https://doi.org/10.1016/S0378-3812(02)00142-5
  10. Rho, S. W., Yoo, K. P., Lee, J. S., Nam, S. C., Son, J. E., and Min, B. M., "Solubility of $CO_2$ in aqueous methyldiethanolamine solutions," J. Chem. Eng. Data, 42(6), 1161-1164(1997) https://doi.org/10.1021/je970097d
  11. 심재구, 김준한, 송광철, 엄희문, "$CO_2$ 저감기술 개발연구(최종보고서)," 한전전력연구원(2003)
  12. Van Holst, J., Politiek, P. P., Niederer, J. P. M., and Versteeg, G. F., "$CO_2$ capture from flue gas using amino acid salt solutions," in 8th Greenhouse Gas Control Technology, IEA Greenhouse Gas R&D Programme, Trondheim, No. 36(2006) and references cited therein
  13. Kumar, P. S., Hogendoorn, J. A., and Versteeg, G. F., "Kinetics of the reaction of $CO_2$ with aqueous potassium salt of taurine and glycine," AIChE J., 49(1), 203-213 (2003) and references cited therein https://doi.org/10.1002/aic.690490118
  14. Astarita, G., SaVage, D. W., and Bisio, A., "Gas treating with chemical solVents," John Wiley & Sons(1992)
  15. Sartori, G. and SaVage, D. W., "Sterically hindered amines for $CO_2$ remoVal from gases," Ind. Eng. Chem. Fundam., 22(2), 239-249(1983) https://doi.org/10.1021/i100010a016
  16. 심재구, 김준한, 장경룡, 엄희문, "Pilot Plant를 이용한 화력발전소 배기가스 중 $CO_2$와 MEA의 흡수특성," 대한환경공학회지, 25(12), 1557-1563(2003)
  17. 엄희문, 류청걸, 장경룡, 심재구, 김준한, "화력발전 $CO_2$ 배가스의 고효율 흡수제 개발 및 대용량 Pilot Plant 적용공정 개발(최종보고서)," 한전전력연구원(2006)
  18. Danckwerts, P. V., "The Reaction of $CO_2$ with Ethanolamine," Chem. Eng. Sci., 34, 443(1979) https://doi.org/10.1016/0009-2509(79)85087-3
  19. da SilVa, E. F., KuznetsoVa, T., KVamme, B., and Merz K. M. Jr., "Molecular dynamics study of ethanolamine as a pure liquid and in aqueous solution," J. Phys. Chem. B., 111(14), 3695-3703(2007) https://doi.org/10.1021/jp068227p