The Effect of Aquatic Macrophytes on the Biogeochemistry of Wetland Sediments

습지 식물이 퇴적물의 생지화학적 반응에 미치는 영향

  • Choi, Jung-Hyun (Department of Environmental Science and Engineering, Ewha Womans University)
  • 최정현 (이화여자대학교 환경공학과)
  • Published : 2008.09.30

Abstract

This research investigates the influences of the presence of aquatic macrophytes on the changes of biogeochemistry in the sediments through the comparative analysis of porewater and sediments. From the in situ measurements, elevated SO$_4{^{2-}}$ concentrations were observed in the rhizosphere during the growing season, which was resulted from the oxidation of reduced sulfide in the sediments by the oxygen release from the plant roots. There was sufficient AVS in the sediments to induce observed SO$_4{^{2-}}$ concentrations. The amount of oxygen in the oxidation of AVS to produce observed SO$_4{^{2-}}$ concentrations is 0.85 g/m$^2$ day which is relevant to the results of other researches. The AVS concentrations in the vegetated sediments increased with the depth whereas there is higher mass of AVS in the surface of the non-vegetated sediments. This shows that evapotranspiration induces the transportation of SO$_4{^{2-}}$ in the surface water into the anaerobic sediments. In addition, the elevated organic content caused by the presence of plants increased $\beta$-glucosidase activities which play an important role in the carbon cycle of the sediments.

이 연구는 습지의 수생 식물이 퇴적물에 유발하는 생지화학적 변화들을 식물이 존재하는 퇴적물과 존재하지 않는 퇴적물의 공극수 및 퇴적물을 비교 분석함으로써 살펴보았다. 현장 실험을 통하여 식물의 생장기간 동안 rhizosphere에서 높은 SO$_4{^{2-}}$ 농도가 관찰되었고, 이는 식물의 뿌리에서 방출된 산소가 주변 퇴적물에 존재하고 있는 sulfide를 산화시킨 결과라 판단된다. 측정된 AVS의 농도는 SO$_4{^{2-}}$ 농도 증가를 보여주기에 충분한 양이 존재하였고, 관찰된 SO$_4{^{2-}}$ 농도를 발생시키기 위해 AVS 산화에 요구되는 산소량은 0.85 g/m$^2$ day로 다른 연구자들의 연구결과와 부합되는 결과를 도출하였다. 식물이 존재하지 않는 퇴적물의 경우 대부분의 AVS가 지표면에 존재하고 있는데 비해 식물이 존재하는 경우 rhizosphere에서 가장 높은 농도의 AVS가 존재하고 있는 것으로 보아 식물의 evapotranspiration에 의해 지표수내 SO$_4{^{2-}}$가 혐기성 상태인 퇴적물 내부로 활발히 이동되어 졌음을 알 수 있다. 그 외에도, 식물에 의해 증가된 유기물은 퇴적물에서 탄소 순환에 중요한 역할을 하는 $\beta$-glucosidase 효소의 활성도를 증가시켰다.

Keywords

References

  1. 권순국, '우리나라 비점원 수질오염 관리의 문제점과 개선방안,' 대한환경공학회지, 20(11), 1497-1510(1998)
  2. 환경부, 2004 환경백서, 환경부, 445-447(2005)
  3. 박병흔, 장정렬, 이광식, 윤경섭, 권순국, '저수지 수질개선을 위한 식생정화시스템,' 한국농공학회지, 42(4), 87-95(2000)
  4. 장정렬, 최선화, 권순국, '식생습지와 개방수역의 배열에 따른 인공습지의 수처리 특성,' 한국물환경학회지, 23(1), 122-130(2007)
  5. Brix, H., 'Do macrophytes play a role in constructed treatment wetlands?,' Water Sci Technol., 35, 11-17(1997) https://doi.org/10.1016/S0273-1223(96)00873-6
  6. Armstrong, W., 'Aeration in higher plants,' Adv. Bot. Res,, 7, 225-232(1979)
  7. Mendelssohn, I. A., Keiss, B. A., and Wakeley, J. S., 'Factors controlling the formation of oxidized root channels: a review,' Wetlands, 15, 37-46(1995)
  8. Flessa, H. and Fischer, W. R., 'Plant-induced changes in the redox potentials of rice rhizosphere,' Plant Soil, 143, 55-60(1992) https://doi.org/10.1007/BF00009128
  9. Fleming-Singer, M. S. and Horne, A. J., 'Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification,' Environ. Sci. Technol., 36, 1231-1237(2002) https://doi.org/10.1021/es010967i
  10. Whiting, G. J., Chanton, J. P., Berlett, D. S., and Happell, J. C., 'Relationships between CH4 emission, biomass and CO2 exchange in a subtropical grassland,' J. Geophy. Res., 96, 3067-3071(1991)
  11. Roura-Carol, M. and Freeman, C., 'Methane release from peat soils: effects of Sphagnum and Juncus,' Soil Biol. Biochem., 31, 323-325(1999) https://doi.org/10.1016/S0038-0717(98)00125-4
  12. Speir, T. W. and Ross, D. J., 'Effects of storage on the activities of protease, urease, phosphatase and sulphatase in three soils under pasture,' NewZeal J. Sci., 18, 231-237(1975)
  13. Sinsabaugh, R. L., Antibus, R. K., and Linkins, A. E., 'An enzymic approach to the analysis of microbial activity during plant litter decomposition,' Agr. Eco. Environ., 34, 43-54(1991) https://doi.org/10.1016/0167-8809(91)90092-C
  14. Ravit, B., Ehrenfeld, J. G., and Haggblom, M. M., 'Effects of vegetation on root-associated microbial communities: A comparison of disturbed versus undisturbed estuarine sediments,' Soil Biol. Biochem., 38, 2359-2371(2006) https://doi.org/10.1016/j.soilbio.2006.02.012
  15. Burns, R. G., 'Enzyme activity in soil: location and a possible role in microbial ecology,' Soil Biol. Biochem., 14, 423-427(1982) https://doi.org/10.1016/0038-0717(82)90099-2
  16. Voets, J. P., Meerschman, P., and Verstraete, W., 'Soil Microbiological and biochemical effects of long-term atrazine applications,' Soil Biol. Biochem., 6, 149-152(1974) https://doi.org/10.1016/0038-0717(74)90019-4
  17. Kowalenko, C. G. and Lowe, L. E., 'Mineralisation of sulphur from four soils and its relationship to soil carbon, nitrogen and phosphorus,' Can. J. Soil Sci., 55, 9-14(1975) https://doi.org/10.4141/cjss75-002
  18. Speir, T. W., Lee, R., Pansier, E. A., and Cairns, A., 'A comparison of sulphtase, urease and protease activities in planted and in fallow soils,' Soil Biol. Biochem., 12, 281-291(1980) https://doi.org/10.1016/0038-0717(80)90075-9
  19. Carignan, R., 'Interstitial water sampling by dialysis: methodological notes,' Limnol. Oceanogr., 29, 667-670(1984) https://doi.org/10.4319/lo.1984.29.3.0667
  20. Doig, L. and Liber, K., 'Dialysis minipeeper for measuring pore-water metal concentrations in laboratory sediment toxicity and bioavailability tests,' Environ. Toxicol. Chem., 19, 2882-2889(2000) https://doi.org/10.1897/1551-5028(2000)019<2882:DMFMPW>2.0.CO;2
  21. Shati, M. R., Ronen, D., Mandelbaum, R., 'Method for in situ study of bacterial activity in aquifers,' Environ. Sci. Technol., 30, 2646-2653(1996) https://doi.org/10.1021/es960117g
  22. Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Hicks, M. B., Mayr, S. M., Redmond, M. S., 'Toxicity of cadmium in sediments: the role of acid volatile sulfide,' Environ. Toxicol. Chem., 9, 1487-1502(1990) https://doi.org/10.1897/1552-8618(1990)9[1487:TOCIST]2.0.CO;2
  23. Freeman, C., Liska, G., Ostle, N. J., Jones, S. E., and Lock, M. A., 'The use of fluorogenic substrates for measuring enzyme activity in peatlands,' Plant Soil, 175, 147-152(1995) https://doi.org/10.1007/BF02413020
  24. Lefroy, R. D. B., Chaitep, W., and Blair, G. J., 'Release of sulfur from rice residues under flooded and non-flooded soil conditions,' Aust. J. Agr. Res., 45, 657-667(1994) https://doi.org/10.1071/AR9940657
  25. Wind, T., Conrad, R., 'Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfatereducing bacteria in planted and unplanted paddy soil,' FEMS Microbiol. Ecol., 18, 257-266(1995) https://doi.org/10.1111/j.1574-6941.1995.tb00182.x
  26. Urban, N. R., Brezonik, P. L., Baker, L. A., Sherman, L. A., 'Sulfate reduction and diffusion in sediments of Little Rock Lake. Wisconsin,' Limnol. Oceanogr., 39, 797-815(1994) https://doi.org/10.4319/lo.1994.39.4.0797
  27. Berner, R. A., 'Sedimentary pyrite formation: an update,' Geochim. Cosmochim. Acta, 48, 605-615(1984) https://doi.org/10.1016/0016-7037(84)90089-9
  28. Brix, H., 'Do macrophytes play a role in constructed treatment wetlands?,' Water Sci. Technol., 35, 11-17(1997) https://doi.org/10.1016/S0273-1223(96)00873-6
  29. Xu, S., Leri, A. C., Myneni, S. C. B., and Jaffe, P. R., 'Uptake of bromide by two wetland plants(Typhalatifolia L. and Phragmites australis(Cav.) Trin. ex Steud),' Environ. Sci. Technol., 38, 5642-5648(2004) https://doi.org/10.1021/es049568o
  30. Di Toro, D. M., Mahony, J. D., and Gonzalez, A. M., 'Particle oxidation model of synthetic FeS and sediment acid-volatile sulfide,' Environ. Toxicol. Chem., 15, 2156-2167(1996) https://doi.org/10.1897/1551-5028(1996)015<2156:POMOSF>2.3.CO;2
  31. Dunbabin, J. S., Pokorny, J., Bowmer, K. H., 'Rhizosphere oxygenation by Typha domingensis Pers. in miniature artificial wetland filters used for metal removal from wastewaters,' Aquat. bot., 29, 303-317(1988) https://doi.org/10.1016/0304-3770(88)90075-7
  32. Armstrong, J. and Armstrong, W., 'Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis(Cav.) Trin, ex Steud,' New Phytol., 114, 121-128(1990) https://doi.org/10.1111/j.1469-8137.1990.tb00382.x
  33. Speir, T. W., 'Studies on a clinosequence of soils in tussock grasslands 11. Urease, phosphatase and sulphatase activities of topsoils and their relationship with other properties including plant available sulphur,' NewZeal J. Sci., 20, 159-166(1977)