Bio-alcohol Production from Organic Waste

유기성 폐기물을 이용한 연료용 알코올의 생산

  • Kim, Byung-Chun (Center for Environmental Technology Research, Korea Institute of Science and Technology) ;
  • Park, Jae-Yeon (Center for Environmental Technology Research, Korea Institute of Science and Technology) ;
  • Um, Young-Soon (Center for Environmental Technology Research, Korea Institute of Science and Technology) ;
  • Sang, Byoung-In (Center for Environmental Technology Research, Korea Institute of Science and Technology) ;
  • Chung, Yun-Chul (Center for Environmental Technology Research, Korea Institute of Science and Technology)
  • 김병천 (한국과학기술연구원 환경기술연구단) ;
  • 박재연 (한국과학기술연구원 환경기술연구단) ;
  • 엄영순 (한국과학기술연구원 환경기술연구단) ;
  • 상병인 (한국과학기술연구원 환경기술연구단) ;
  • 정윤철 (한국과학기술연구원 환경기술연구단)
  • Published : 2008.09.30

Abstract

Keywords

References

  1. Goldemberg, J. and Johansson, T. B., 'World Energy Assessment Overview: 2004 Update,' New York: United Nations Development Programme(2004)
  2. Goldemberg, J., 'Ethanol for a sustainable energy future,' Science, 315, 808-810(2007)
  3. Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., Jung, K. S., 'Fermentative butanol production by Clostridia,' Biotechnol. Bioeng., 101(2) 209-228(2008) https://doi.org/10.1002/bit.22003
  4. Service, R. F., 'Cellulosic ethanol: Biofuel researchers prepare to reap a new harvest,' Science, 315, 1488-1491(2007) https://doi.org/10.1126/science.315.5818.1488
  5. Himmel, M. E., Ding, S-Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., John, W., Brady, J. W., Foust, T. D., 'Biomass recalcitrance: Engineering plants and enzymes for biofuels production,' Science, 315, 804-807(2007) https://doi.org/10.1126/science.1137016
  6. Wyman, C. E., 'What is(and is not) vital to advancing cellulosic ethanol,' Trends in Biotechnol., 25(4) 153-157(2007) https://doi.org/10.1016/j.tibtech.2007.02.009
  7. Chung, C-H., 'Cellulosic ethanol production,' Korean J. Biotechnol. Bioeng., 23(1), 1-7(2008)
  8. 한효정, 리홍신, 김성준 '음식물 쓰레기 동시당화 발효에 의한 에탄올 생산,' 한국생물공학회지, 21(6), 474-478(2006)
  9. 문희천, 김구환, 이진경, 김동기, 박익범, 허종원 '음식물쓰레기의 효소 당화 및 Saccharomyces cerevisiae KCTC7 을 이용한 에탄올 발효,' 경기도보건환경연구원보, pp. 105-114(2006)
  10. Yamashita, Y., Kurosumi, A., Sasaki, C., and Nakamura, Y., 'Ethanol production from paper sludge by immobilized Zymomonas mobilis,' Biochem. Eng. J., 42, 314-319(2008) https://doi.org/10.1016/j.bej.2008.07.013
  11. Marques, S., Alves, L., Roseiro, J. C., and Girio, F. M., 'Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichia stipitis,' Biomass Bioenergy, 32, 400-406(2008) https://doi.org/10.1016/j.biombioe.2007.10.011
  12. Tang, Y. Q., Koike, Y., Liu, K., An, M.-Z., Morimura, S., Wu, X.-L., and Kida, K., 'Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7,' Biomass Bioenergy, 32, 1037-1045(2008) https://doi.org/10.1016/j.biombioe.2008.01.027
  13. Oleskowicz-Popiel, P., Lisiecki, P., Holm-Nielsen, J. B., Thomsen, A. B., and Thomsen, M. H., 'Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure,' Bioresour. Technol., 99, 5327-5334(2008) https://doi.org/10.1016/j.biortech.2007.11.029
  14. Hahn-Hagerdal, B., M. Galbe, M. F., Gorwa-Grauslund, Lide'n G., and G. Zacchi 'Bio-ethanol - the fuel of tomorrow from the residues of today,' Trends. Biotechnol., 24(12), 549-556(2006) https://doi.org/10.1016/j.tibtech.2006.10.004
  15. Sun, Y. and Cheng, J., 'Hydrolysis of lignocellulosic material for ethanol production: a review,' Bioresour. Technol., 83, 1-11(2002) https://doi.org/10.1016/S0960-8524(01)00212-7
  16. Champagne, P., 'Feasibility of producing bio-ethanol from waste residues: A Canadian perspective Feasibility of producing bio-ethanol from waste residues in Canada,' Resour, Conserv. Recycling, 50, 211-230(2007) https://doi.org/10.1016/j.resconrec.2006.09.003
  17. Millet, M. A., Baker, A. J., and Scatter, L. D., 'Physical and chemical pretreatment for enhancing cellulose saccharification,' Biotechnol. Bioeng., 6, 125-153(1976)
  18. Shafizadeh, F. and Bradbury, A. G. W., 'Thermal degradation of cellulose in air and nitrogen at low temperatures,' J. Appl. Polym. Sci., 23, 1431-1442(1979) https://doi.org/10.1002/app.1979.070230513
  19. Fan, L. T., Gharpuray, M. M., and Lee, Y. H., Cellulose hydrolysis biotechnology monographs, Berlin: Springer; p. 57(1987)
  20. McMillan, J. D., 'Pretreatment of lignocelluloses biomass,' In: Himmel, M. E., Baker, J. O., Overend, R. P., Eds. Conversion of hemicellulose hydrolyzates to ethanol., Washington, DC: American Chemical Society Symposium; pp. 292-324(1994)
  21. Holtzapple, M. T., Humphrey, A. E., and Taylor, J. D., 'Energy requirement for the size reduction of poplar and aspen wood,' Biotechnol. Bioeng., 33, 207-210(1989) https://doi.org/10.1002/bit.260330210
  22. Nakamura, Y. and Sawada, T., 'Ethanol production from artificial domestic household waste solubilized by steam explosion,' Biotechnol. Bioprocess. Eng., 8, 205-209(2003) https://doi.org/10.1007/BF02935898
  23. Mes-Hartree, M., Dale, B. E., and Craig, W. K., 'Comparison of steam and ammonia pretreatment for enzymatic hydrolysis of cellulose,' Appl. Microbiol. Biotechnol., 29, 462-468(1988) https://doi.org/10.1007/BF00269069
  24. Holtzapple, M. T., Lundeen, J. E., and Sturgis, R., 'Pretreatment of lignocellulosic municipal solid waste by ammonia fiber explosion(AFEX),' Appl. Biochem. Biotechnol., 34/35, 5-21(1992) https://doi.org/10.1007/BF02920530
  25. Reshamwala, S., Shawky B. T., and Dale, B. E., 'Ethanol production from enzymatic hydrolysis of AFEX-treated coastal Bermuda grass and switchgras,' Appl, Biochem, Biotechnol., 51/52, 43-55(1995) https://doi.org/10.1007/BF02933410
  26. Tengerdy, R. P., and Nagy, J. G., 'Increasing the feed value of forestry waste by ammonia freeze explosion treatment,' Biol. Wastes, 25, 149-153(1988) https://doi.org/10.1016/0269-7483(88)90105-X
  27. Dale, B. E., Henk, L. L., and Shiang, M., 'Fermentation of lignocellulosic materials treated by ammonia freezeexplosion,' Dev. Ind. Microbiol., 26, 223-233(1984)
  28. Dale, B. E. and Moreira, M. J., 'A freeze-explosion technique for increasing cellulose hydrolysis,' Biotechnol. Bioeng., 12, 31-43(1982)
  29. Ben-Ghedalia, D. and Miron, J., 'The effect of combined chemical and enzyme treatment on the saccharification and in vitro digestion rate of wheat straw,' Biotechnol. Bioeng., 23, 823-831(1981) https://doi.org/10.1002/bit.260230412
  30. Neely, W. C., 'Factors affecting the pretreatment of biomass with gaseous ozone,' Biotechnol. Bioeng., 20, 59-65(1984)
  31. Ben-Ghedalia, D. and Shefet, G., 'Chemical treatments for increasing the digestibility of cotton straw,' J. Agric. Sci., 100, 393-400(1983) https://doi.org/10.1017/S0021859600033542
  32. Vidal, P. F. and Molinier, J., 'Ozonolysis of ligninimprovement of in vitro digestibility of popular sawdust,' Biomass, 16, 1-17(1988) https://doi.org/10.1016/0144-4565(88)90012-1
  33. Sivers, M. V. and Zacchi, G., 'A techno-economical comparison of three processes for the production of ethanol from pine,' Bioresour. Technol., 51, 43-52(1995) https://doi.org/10.1016/0960-8524(94)00094-H
  34. Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., and Penner, M. H., 'Modeling and optimization of the dilute sulfuric acid pretreatment of corn stover, poplar and switchgrass,' Bioresour. Technol., 59(2/3), 129-136(1997) https://doi.org/10.1016/S0960-8524(97)81606-9
  35. Lloyed, T. A. and Wyman, C. E., 'Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids,' Bioresour. Technol., 96, 1967-1977(2005) https://doi.org/10.1016/j.biortech.2005.01.011
  36. Hinman, N. D., Schell, D. J., Riley, C. J., Bergeron, P. W., and Walter, P. J., 'Preliminary estimation of the cost of ethanol production for SSF technology,' Appl. Biochem. Biotechnol., 34/35, 639-649(1992) https://doi.org/10.1007/BF02920584
  37. Hsu, T. A., 'Pretreatment of biomass,' In: Wyman, C. E., Ed. Handbook on bioethanol production and utilization, Applied Energy Technology Series. Washington, DC: Taylor & Francis(1996)
  38. Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., and Lee, Y. Y., 'Coordinated development of leading biomass pretreatment technologies,' Bioresour. Technol., 96, 1959-1966(2005) https://doi.org/10.1016/j.biortech.2005.01.010
  39. Schurz, J. and Ghose, T. K., Eds. Bioconversion of cellulosic substances into energy chemicals and microbial protein symposium proceedings, p. 37(1978)
  40. Hatakka, A. I. and Uusi-Rauva, A. K., 'Degradation of 14C-labelled poplar wood lignin by selected white-rot fungi,' Eur. J. Appl. Microbiol. Biotechnol., 17, 235-242(1983) https://doi.org/10.1007/BF00510422
  41. Boominathan, K. and Reddy, C. A., 'cAMP-mediated differential regulation of lignin peroxidase and manganesedependent peroxidase production in the white-rot basidiomycete Phanerochaete chrysosporium,' Proc. Natl. Acad. Sci., U.S.A 89(12), 5586-5590(1992)
  42. Blanchette, R. A., 'Delignification by wood-decay fungi,' Annu. Rev. Phytopathol., 29, 381-398(1991) https://doi.org/10.1146/annurev.py.29.090191.002121
  43. Heitz, M., Capek-Menard, E., Korberle, P. G., Gange, J., Chornet, E., and Overend, R. P., 'Fractionation of Populus tremuloides at the pilot plant scale: optimization of steam pretreatment conditions using the STAKE II technology,' Bioresour. Technol., 25, 23-32(1991)
  44. Gollapalli, L. E., Dale, B. E., and Rivers, D. M., 'Predicting digestibility of ammonia fiber explosion(AFEX)-treated rice straw,' Appl. Biochem. Biotechnol., 98-100, 23-35(2002) https://doi.org/10.1385/ABAB:98-100:1-9:23
  45. Varga, E., Szengyel Z., and Reczey, K., 'Chemical pretreatments of corn stover for enhancing enzymatic digestibility,' Appl. Biochem. Biotechnol., 98-100, 73-87(2002) https://doi.org/10.1385/ABAB:98-100:1-9:73
  46. van Walsum, G. P., Allen, S. G., Spencer, M. J., Laser, M. S., Antal M. J., and Lynd, L. R., 'Conversion of lignocellulosics pretreated with liquid hot water to ethanol,' Appl. Biochem. Biotechnol., 57-58, 157-170(1996) https://doi.org/10.1007/BF02941696
  47. Wood, T. M. and Saddler, J. N., 'Increasing the availability of cellulose in biomass material,' Meth. Enzymol., 160, 3-11(1988) https://doi.org/10.1016/0076-6879(88)60101-7
  48. Coughlan, M. P., Ljungdahl, L. G., 'Comparative biochemistry of fungal and bacterial cellulolytic enzyme system,' In: Aubert, J. P., Beguin, P., Millet, J., Eds. Biochemistry and genetics of cellulose degradation. London:Academic Press, pp. 11-30(1988)
  49. Duff, S. J. B. and Murray, W. D., 'Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review,' Bioresour. Technol., 55, 1-33(1996) https://doi.org/10.1016/0960-8524(95)00122-0
  50. Ramos, J. P., Breuil, C., and Saddler, J. N., 'The use of enzyme recycling and the influence of sugar accumulation on cellulose hydrolysis by Trichoderma cellulases,' Enzyme. Microb. Technol., 15, 19-25(1993) https://doi.org/10.1016/0141-0229(93)90111-E
  51. Saxena, A., Garg, S. K., and Verma, J., 'Simultaneous saccharification and fermentation of waste newspaper to ethanol,' Bioresour. Technol., 39, 13-15(1992)
  52. Zheng, Y. Z., Lin, H. M., and Tsao, G. T., 'Pretreatment for cellulose hydrolysis by carbon dioxide explosion,' Biotechnol. Prog., 14, 890-896(1998) https://doi.org/10.1021/bp980087g
  53. Larsson, S. Quintana-Sainz, A., Reimann, A., Nilvebrant, N.-O., and Jonsson, L.J., 'Influence of lignocellulosederived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae,' Appl. Biochem. Biotechnol., 84-86, 617-632(2000) https://doi.org/10.1385/ABAB:84-86:1-9:617
  54. Ballesteros, I., Ballesteros, M., Cabanas, A., Carrasco, J., Martin, C., and Negro, M. J., 'Selection of thermotolerant yeasts for simultaneous saccharification and fermentation(SSF) of cellulose to ethanol,' Appl. Biochem. Biotechnol., 28/29, 307-315(1991) https://doi.org/10.1007/BF02922610
  55. Hacking, A. J., Taylor, I. W. F., and Hanas, C. M., 'Selection of yeast able to produce ethanol from glucose at $40{\circ}C$,' Appl. Microbiol. Biotechnol., 19, 361-363(1984)
  56. Dien, B. S., Cotta, M. A., and Jeffries, T. W., 'Bacteria engineered for fuel ethanol production: current status,' Appl. Microbiol. Biotechnol., 63, 258-266(2003) https://doi.org/10.1007/s00253-003-1444-y
  57. Jeffries, T. W., 'Engineering yeasts for xylose metabolism,' Curr. Opin. Biotechnol., 17, 1-7(2006) https://doi.org/10.1016/j.copbio.2006.01.005
  58. 김남천, 장병만, '삼중염을 이용한 음식물쓰레기 퇴비의 염분(NaCl) 분해 방법,' 유기물자원화, 12(3), 86-94(2004)
  59. Mahmoud, K. T., Tarek, M. E-N., and Osama, H. S., 'Ethanol from lactose in salted cheese whey by recombinant Saccharomyces cerevisiae,' Z. Lebensm Unters Forsch, 208, 60-64(1999) https://doi.org/10.1007/s002170050376
  60. Trainotti, N. and Stambuk, B. U., 'NaCl stress inhibits maltose fermentation by Saccharomyces cerevisiae,' Biotechnol. Lett., 23, 1703-1704(2001) https://doi.org/10.1023/A:1012456432280
  61. Hollatz, C. and Stambuk, B. U., 'Regulation of Saccharomyces cerevisiae maltose fermentation by cold temperature and CSF1,' Brazil. J. Microbiol., 34(1), 99-101(2003) https://doi.org/10.1590/S1517-83822003000500034
  62. Zhang, M., Eddy, C., Daenda, K., Finkelstein, M., and Picataggio, S. K., 'Metabolic engineering of a pentose pathway in ethanologenic Zymomonas moblis,' Science, 267, 240-243(1995) https://doi.org/10.1126/science.267.5195.240
  63. Bolen, P. L., Bietz, J. A., and Detroy, R. W., 'Aldose reductase in the yeast Pachysolen tannophilus: purification, characterization, and N-terminal sequence,' Biotechnol. Bioeng., 15, 129-148(1985) https://doi.org/10.1002/bit.260150110
  64. Ho, N. W. Y., Lin, F. P., Huang, S., Andrews, P. C., and Tsao, G. T., 'Purification, characterization and Nterminal sequence of xylose reductase from Candida shehatae,' Enzyme. Microbiol. Technol., 12, 33-39(1990) https://doi.org/10.1016/0141-0229(90)90177-R
  65. Verduyn, C., Jzn, J. F., Van Dijken, J. P., and Scheffers, W. A., 'Multiple forms of xylose reductase in Pachysolen tannophilus CBS 4044,' FEMS Microbiol. Lett., 30, 313-317(1985a) https://doi.org/10.1111/j.1574-6968.1985.tb01102.x
  66. Verduyn, C., Van Kleef, R., Frank, J. J., Schreuder, H., Van Dijken, J. P., and Scheffers, W. A., 'Properties of the NAD(P)Hdependent xylose reductase from the xylosefermenting yeast Pichia stipitis,' Biochem. J., 226, 669-677(1985b) https://doi.org/10.1042/bj2260669
  67. Henderson, B., Champagne, P., and Tudoret, M. J., 'Chemical separation of cellulose from lignin in sugarcane bagasse,' In: Eighth Specialty Conf.: Environment & Sustainable Engineering & 31st Annual CSCE Congress Proc.; p. ENK-283(2003)
  68. Levy, T., Champagne, P., Tudoret, M. J., and Dinel, H., 'Bio-chemical integrated recycling of hog manure,' In: Eighth Spec. Conf.: Environment & Sustainable Engineering & 31st Annual CSCE Congress Proc.; p. ENK-284(2003a)
  69. Levy, T., Champagne, P., Tudoret, M. J., and Dinel, H., 'Feasibility study on the recovery of commodity chemicals & agriproducts from hog manure,' In: 18th Int. Conf. Solid Waste Technology & Management(2003b)
  70. Champagne, P., Levy, T., and Tudoret, M. J., 'Recovery of value-added products from hog manure-a feasibility study,' J. Solid. Waste. Technol. Manage., 31(3), 147-157(2005)
  71. Li, C. and Champagne, P., 'Feasibility of using waste materials as feedstocks for ethanol production,' Int. J. Solid. Waste. Technol. Manage., 31(2), 93-101(2005a)
  72. Li, C. and Champagne, P., 'Enzymatic hydrolysis of cellulose from variouswaste sources and their feasibility as feedstocks for ethanol production,' In: 20th International Conference on Solid Waste Technology and Management(2005b)
  73. Kim, S. and Dale, B. E., 'Global potential bioethanol production from wasted crops and crop residues,' Biomass Bioenergy, 26, 361-375(2004) https://doi.org/10.1016/j.biombioe.2003.08.002
  74. Cuzens, J. C. and Miller, J. R., 'Acid hydrolysis of bagasse for ethanol production,' Renewable Energy, 10, 285-290(1997) https://doi.org/10.1016/0960-1481(96)00079-1
  75. Zayed, G. and Meyer, O., 'The single-batch bioconversion of wheat straw to ethanol employing the fungus Trichoderma viride and the yeast Pachysolen tannophylus,' Appl. Microbiol. Biotechnol., 45, 551-555(1996)
  76. Rivers, D. B. and Emert, G. H., 'Factors affecting the enzymatic hydrolysis of bagasse and rice straw,' Biol. Wastes, 26, 85-95(1988) https://doi.org/10.1016/0269-7483(88)90154-1
  77. Wen, Z., Liao, W., and Chen, S., 'Hydrolysis of animal manure lignocellulosics for reducing sugar production,' Biores. Technol., 91, 31-39(2004) https://doi.org/10.1016/S0960-8524(03)00166-4
  78. Chen, S., Liao, W., Liu, C., Wen, Z., Kincaid, R. L., and Harrison, J. H., 'Use of animal manure as feedstock for bio-products,' In: Proceedings of Ninth International Animal, Agricultural and Food Processing Wastes Symposium, p. 50-57(2003)
  79. Chen, S., Liao, W., Liu, C., Wen, Z., Kincaid, R. L., and Harrison, J. H., 'Value-added chemicals animal manures,' Northwest Bioproducts Research Institute Technical Report. US Department of Energy Contract DEAC06-76RLO 1830, pp. 135(2004)
  80. Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Montague, L., Slayton, A., and Lukas J., 'Lignocellulosic biomass to ethanol processing design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover,' National Renewable Energy Laboratory Technical Report NREL/TP-510-32438(2002)(http://www.nrel.gov/docs/fy02osti/32438.pdf)
  81. http://www.iogen.ca/
  82. http://www.abengoabioenergy.com
  83. http://www.etek.se
  84. Durre, P., 'Biobutanol: an attractive biofuel,' Biotechnol. J., 2, 1525-1534(2007) https://doi.org/10.1002/biot.200700168
  85. Schwarz, W. H. and Gapes, J. R., 'Butanol-rediscovering a renewable fuel,' BioWorld Europe 01-2006, 16-19(2006)
  86. Antoni, D., Zverlov, V. V., and Schwarz, W. H., 'Biofuels from microbes,' Appl. Microbiol. Biotechnol., 77, 23-35(2007) https://doi.org/10.1007/s00253-007-1163-x
  87. http://www2.dupont.com/Biofuels/en_US
  88. Durre, P., 'Fermentative butanol production: bulk chemical and biofuel,' Ann. N. Y. Acad. Sci., 1125, 353-362(2008) https://doi.org/10.1196/annals.1419.009
  89. Kosaka, T., Nakayama, S., Nakaya, K., Yoshino, S., and Furukawa, K., 'Characterization of the sol operon in butanol-hyperproducing Clostridium saccharoperbutylacetonicum strain N1-4 and its degeneration mechanism,' Biosci. Biotechnol. Biochem., 71, 58-68(2007)
  90. Gapes, J. R., 'The economics of acetone-butanol fermentation: theoretical and market considerations,' J. Mol. Microbiol. Biotechnol., 2, 27-32(2000)
  91. Ezeji, T. C., Qureshi, N., Karcher, P., and Blaschek, H. P., 'Butanol production from corn,' In Alcoholic Fuels: Fuels for Today and Tomorrow, Minteer, S.D. Ed., New York, NY: Taylor & Francis, pp. 99-122(2006)
  92. Ezeji, T. C., Qureshi, N., and Blaschek, H. P., 'Industrially relevant fermentations,' In Handbook on Clostridia, Durre P. Ed., Boca Raton, Florida: CRC Press, Taylor & Francis Group, pp. 797-812(2005)
  93. Ezeji, T. C., Qureshi, N., and Blaschek, H. P., 'Bioproduction of butanol from biomass: from genes to bioreactors,' Curr. Opin. Biotechnol., 18, 220-227(2007) https://doi.org/10.1016/j.copbio.2007.04.002
  94. Qureshi, N. and Blaschek, H. P., 'Economics of butanol fermentation using hyper-butanol producing Clostridium beijerinckii BA101,' Trans. IChemE., 78, 139-144(2000)
  95. Nimcevic, D. and Gapes, J. R., 'The acetone-butanol fermentation in pilot plant and pre-industrial scale,' J. Mol. Microbiol. Biotechnol., 2, 15-20(2000)
  96. Qureshi, N. and Blaschek, H. P., 'Butanol production from agricultural biomass,' In Food Biotechnology, Shetty, K., Pometto, A., Paliyath, G. Eds., Boca Raton, FL:Taylor & Francis Group plc, pp. 525-551(2005)
  97. Qureshi, N., Ebener, J., Ezeji, T. C., Dien, B., Cotta, M. A., and Blaschek, H. P., 'Butanol production by Clostridium beijerinckii BA101. Part I: Use of acid and enzyme hydrolysed corn fiber,' Bioresour. Technol., 99, 5915-5922(2008) https://doi.org/10.1016/j.biortech.2007.09.087
  98. Qureshi, N., Saha, B. C., Hughes, S. R., and Cotta, M. A., 'Production of acetone butanol(AB) from agricultural residues using Clostridium acetobutylicum in batch reactors coupled with product recovery,' Ninth International Workshop and Conference on the Regulation of Metabolism, Genetics and Development of the Solvent and Acid Forming Clostridia, Rice University, Houston, pp. 18-21(2006)
  99. Zverlov, V. V., Berezina, O., Velikodvorskaya, G. A., and Schwarz, W. H., 'Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery,' Appl. Microbiol. Biotechnol., 71, 587-597(2006) https://doi.org/10.1007/s00253-006-0445-z
  100. Ezeji, T. C., Qureshi, N., and Blaschek, H. P., 'Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation,' Biotechnol. Bioeng., 97, 1460-1469(2007) https://doi.org/10.1002/bit.21373
  101. Ezeji, T. and Blaschek, H. P., 'Fermentation of dried distillers' grains and solubles(DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia,' Bioresour. Technol., 99, 5232-5242(2008) https://doi.org/10.1016/j.biortech.2007.09.032
  102. Lee, S. M., Cho, M. O., Chung, Y. C., Sang, B. I., and Um, Y. S., 'Continuous Butanol Production Using Suspended and Immobilized Clostridium beijerinckii NCIMB 8052 with supplementary butyrate,' Energy & fuels, 22, 3459-3464(2008) https://doi.org/10.1021/ef800076j
  103. Lee, Y.-J., Sang, B.-I., and Um, Y. S., 'Biobutanol production from food waste by Clostridium strains,' Renewable Energy 2008, Pusan, Korea, in press