Degradative Solidification/Stabilization of Liquid Waste Containing Chloroform and Methylene Chloride by Cement/Slag/Fe(II) Systems

Cement/Slag/Fe(II) 시스템에 의한 클로로포름과 메틸렌클로라이드 함유 액상폐기물의 분해성 고형화/안정화

  • Published : 2008.10.31

Abstract

Degradative Solidification/Stabilization(DS/S) is a modification of conventional Solidification/Stabilization(S/S) that incorporates degradative processes for organic contaminant destruction with the low cost of conventional S/S. Inorganic contaminants are immobilized and chlorinated organic contaminants are destroyed by DS/S treatment. In this study, a DS/S using cement/slag/Fe(II) systems as binder was investigated to assess its effectiveness in degrading chloroform(CF) and methylene chloride(MC) contained in hazardous liquid wastes. The initial concentration of CF was 0.26 mM, 1.0 mM, 8.4 mM, 25 mM and 42 mM and Fe(II) was 200 mM. The result showed that degradation of CF in various concentration was in one kind reaction as pseudo-first-order and 95% of 0.26 mM initial concentration of CF was removed in five days. 50 mg/L of heavy metal was added in order to accelerate the rate of degradation of MC and initial concentration of MC was 3.50 mM however, degradation did not occur in system. Thus additional studies needed for degradation of MC and more studies on other reaction pathways products will help elucidate reaction mechanisms and pathways for chlorinated methanes in cement/slag/Fe(II) systems.

분해성 고형화/안정화(DS/S, degradative solidification/stabilization)는 전통적인 고형화/안정화(S/S, Solidification/Stabilization)에 경제성과 유기 오염물질의 분해를 추가한 기술이다. 무기 오염물질은 고정되며 유기 오염물질은 DS/S시스템에 의해 분해된다. 본 연구에서는 액상폐기물 내의 클로로포름(CF)과 메틸렌클로라이드(MC) 분해를 위해 cement/slag/Fe(II)시스템을 바인더로 한 DS/S의 효율성을 평가 하였다. 초기 CF의 농도는 0.26 mM, 1.0 mM, 8.4 mM, 25 mM and 42 mM 그리고 Fe(II) 농도는 200 mM로 하였다. 실험결과 다양한 농도의 CF의 분해경향은 유사일차반응으로 표현할 수 있었으며 초기농도 0.26 mM에서 5일 이내에 95%가 분해되었다. MC의 분해를 촉진시키기 위하여 중금속 50 mg/L을 추가하였으나 분해는 거의 이루어지지 않았다. 따라서 MC의 분해를 위해서 추가적인 고찰이 필요하다고 판단되며 다른 반응 경로의 부산물에 대한 추가적인 고찰을 통해 cement/slag/Fe(II)에서 메탄 계열의 염소계유기화합물의 명확한 분해 경로와 메카니즘을 파악할 수 있을 것이다.

Keywords

References

  1. 환경부, 2005년 지정폐기물 발생 및 처리 현황(2006)
  2. 김준환, 신선경, 김상돈, 김혜진, 김진경, 양상용, 국립환경연구원보, 24, 375-388(2002)
  3. 김상국, 김동한, 신대현, 정수현, 우제경, 노남선, 한국에너지기술연구소, KIER'951125(1997)
  4. Hwang, I. and Batchelor, B., 'Reductive dechlorination of tetrachloroethylene by Fe(II) in cement slurries,' Environ. Sci. Technol., 34, 5017-5022(2000) https://doi.org/10.1021/es991377b
  5. Hwang, I. and Batchelor, B., 'Reductive dechlorination of chlorinated methanes in cement slurries containing Fe(II),' Chemosphere, 48, 1019-1027(2002) https://doi.org/10.1016/S0045-6535(02)00152-2
  6. 박현진, 황인성, 손석일, 박주양, '시멘트/Fe(II)에 의한 TCE의 환원적 탈염소화 반응의 최적 조건,' 대한환경공학회지, 25(7), 838-845(2003)
  7. Kang, W. H., Park, J. Y., Hwang, I., Hwang, B. C., Lee, S. W., Kim, S., and Cho, J. S., 'Reductive Detoxification of Trichloroethylene by Steel Slag Amended With Fe(II),' Remediation of Chlorinated and Recalcitrant Compounds, 4th International Coference, Battelle(2004)
  8. 쌍용시멘트, 시멘트 시험 성적(2003)
  9. POSCO, 제강슬래그 시험 성적(2003)
  10. Matheson, L. J. and Tratnyek, P. G., 'Reductive dehalogenation of chlorinated methanes by iron metal,' Environ. Sci. Technol., 28(12), 2045-2052(1994) https://doi.org/10.1021/es00061a012
  11. Lewis, T. A., Morra, M, J., Brown, P. D., 'Comparative product analysis of carbon tetrachloride dehalogenation catalyzed by cobalt corrins in the presince of thiol of titanium(III) reducing agent,' Environ. Sci. Technol., 30, 292-300(1996) https://doi.org/10.1021/es950327d
  12. Lowry, G. V. and Reinhard, M., 'Hydrodehalogenation of Halogenated Groundwater Contaminants with Pd Catalysts and H2,' Environ. Remediation Sci. Technol., 109-118(1999)
  13. Vogel, T. M., Criddle, C. S., McCarty, P. L., 'Trans formation of halogenated aliphatic compounds,' Environ. Sci. Technol., 21, 722-736(1987) https://doi.org/10.1021/es00162a001
  14. Wei, J., X., Liu, Y., Wang, D., 'Catalytic hydrodechlorination of 2,4'dichlorophenol over nanoscale Pd/Fe : reaction pathway and some experimental parameters,' Water Res., 40, 348-354(2006) https://doi.org/10.1016/j.watres.2005.10.017
  15. Zhang, W. X., Wang, C. B., Lien, H. L., 'Treatment of chlorinated organic contaminants with nanoscale bimetallic particles,' Catal. Today, 40, 387-395(1998) https://doi.org/10.1016/S0920-5861(98)00067-4
  16. Elliot, D. W., Zhang, W., 'Field assessment of nanoscale bimetallic particles for groundwater treatment,' Environ. Sci. Technol., 35, 4922-4926(2001) https://doi.org/10.1021/es0108584