Study on the Performances and Microbial Community in the Biofilm Process for Treating Nonpoint Source Pollutants

비점오염물질 처리를 위한 생물막 공정의 운전 및 미생물 군집의 특성

  • Choi, Gi-Choong (SU engineering Co. Ltd) ;
  • Park, Jeung-Jin (SU engineering Co. Ltd) ;
  • Kang, Du-Kee (Nwater Co. Ltd) ;
  • Yu, Jae-Cheul (School of Civil and Environmental Engineering, Pusan National University) ;
  • Byun, Im-Gyu (School of Civil and Environmental Engineering, Pusan National University) ;
  • Shin, Hyun-Suk (School of Civil and Environmental Engineering, Pusan National University) ;
  • Lee, Tae-Ho (School of Civil and Environmental Engineering, Pusan National University) ;
  • Park, Tae-Joo (School of Civil and Environmental Engineering, Pusan National University)
  • 최기충 ((주)수엔지니어링) ;
  • 박정진 ((주)수엔지니어링) ;
  • 강두기 (낙동수환경방재기술원) ;
  • 유재철 (부산대학교 사회환경시스템공학부) ;
  • 변임규 (부산대학교 사회환경시스템공학부) ;
  • 신현석 (부산대학교 사회환경시스템공학부) ;
  • 이태호 (부산대학교 사회환경시스템공학부) ;
  • 박태주 (부산대학교 사회환경시스템공학부)
  • Published : 2008.10.31

Abstract

In this study, biofilm process was introduced for treating nonpoint source pollutants. The ceramic media were provided for biofilm growth in the reactors. The packing ratio of ceramic media was 5% and 15(v/v)%, respectively. Thereafter, the reactors were operated intermittently with the different interevent periods such as 0, 5, 10 and 15 days, respectively. The removal efficiencies of COD and NH$_4{^+}$-N were investigated at the different operating conditions such as media packing ratio, temperature, and interevent period. Additionally, Polymerase chain reaction(PCR)-denaturing gel gradient electrophoresis(DGGE) and INT-dehydrogenase activity(DHA) test were conducted to observe the microbial community and activity in the biofilm. Consequently, the interevent period seemed to have no significant influence on the COD removal efficiency. COD was removed within 6$\sim$8 hours at 25$^{\circ}C$ and about 15 hours at 10$^{\circ}C$. DGGE profiles showed that the initial species of microorganisms were changed from seeded activated sludge into the microorganisms detected in sediments. INT-DHA test also showed that the activities of microorgnaisms were not decreased even in the 15 days of interevent period.

본 연구에서는 비점오염물질을 처리하기 위해 생물막 공정이 도입되었다. 반응기내의 생물막의 성장으로 위해 세라믹 담체가 사용되었으며, 담체의 충전률은 각각 5% 및 15(v/v)%였다. 이후, 반응기는 각각 0, 5, 10, 15일의 무강우기간에 따라 회분식으로 운전되었다. COD 및 NH$_4{^+}$-N의 제거효율이 담체 충전률, 온도 및 무강우기간에 따라 조사되었으며, 추가적으로 polymerase chain reaction (PCR)-denaturing gel gradient electrophoresis(DGGE)와 INT-dehydrogenase activity(DHA) test를 통하여 미생물 군집 및 활성도가 해석되었다. 운전 결과, 무강우기간이 늘어남에도 충전률에 관계없이 COD의 제거는 안정적으로 일어났다. COD는 25$^{\circ}C$에서는 6$\sim$8 hr, 10$^{\circ}C$에서는 약 15 hr의 반응시간이 필요하였다. DGGE 분석 결과, 무강우기간이 늘어남에 따라 식종 슬러지에서 발견되는 미생물에서 저니토에서 주로 발견되는 미생물로 변화됨을 확인할 수 있었다. 또한 INT-DHA법에 의한 미생물의 활성도 측정 결과, 15일의 무강우기간에도 활성도의 감소는 관찰되지 않았다.

Keywords

References

  1. 환경부, 환경백서(2006)
  2. 환경부, 물환경관리 기본계획(2006)
  3. 공민근, 배기현, 강우영, '비점오염 저감을 위한 장치형 시설의 현황,' 상하수도학회지, 18(6), 707-711(2004)
  4. Park, T. J., Lee, K. H., Kim, D. S. and Kim, C. W. 'Petrochemical Wastewaterwith Aerated Submerged Fixed' Film Reactor(ASFFR) under High Organic Loading Rate,' Water Sci. Technol., 34(10), 9-16(1996)
  5. Park, T. J., Lee, K. H., and Lee, J. H., 'Simultaneous Organic and Nutrient Removal from Municipal Wastewater by BSACNR Process,' Korean J. Chem. Eng., 15(1), 9-14(1998) https://doi.org/10.1007/BF02705299
  6. Muyzer, G. and Smalla, K., 'Application of denaturing gradient gel electrophoresis(DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology,' Antonie van Leeuwenhoek, 73, 127-141(1998) https://doi.org/10.1023/A:1000669317571
  7. Zhaojun Li, Jianming Xu, Caixian Tang, Jianjun Wu, Akmal Muhammand, and Haizhen Wang, 'Application of 16S rDNA'PCR amplification and DGGE fingerpringting for detection of shift in microbial community diversity in Cu', Zn', and Cd'contaminated paddy soils,' Chemosphere, 62(8), 1374-1380(2006) https://doi.org/10.1016/j.chemosphere.2005.07.050
  8. Awong, J., Bitton, G., and Koopman, B., 'ATP, oxygen uptake rate and INT'dehydrogenase activity of actinomycete foams,' Water Res., 19(7), 917-921(1985) https://doi.org/10.1016/0043-1354(85)90151-4
  9. Wiesmann, U., 'Biological Nitrogen Removal from Wastewater,' Adv. Biocem. Eng. Biotechnol., 51, 113-154(1994)
  10. Lazarova, N. R., Manem, J., and Melo, L., 'Influence of dissolved oxygen on nitrification kinetics in a circulating bed reactor,' Water Sci. Technol., 37(4), 189-193(1998)
  11. 유재철, 박정진, 허성호, 김유진, 변임규, 이태호, 박태주, '호기성 생물막 반응기에서 Ammonia Oxidizing Bacteria 에 대한 DO 농도의 영향,' 대한환경공학회지, 29(1), 106-112(2007)
  12. 낙동강물환경연구소, '주요비점오염원 유출 장기모니터링 및 저감기법연구', 낙동강수계 2007년도 환경기초 조사 사업(2007)
  13. 환경부, 수질오염공정시험방법(2004)
  14. Koopman, B., Bitton, G., Logue, C., John, M. Bossart, and Juan, M. Lopez, 'Validity of tetrazolium reduction assays for assessing toxic inhibition of filamentous bacteria in activated sludge,' Toxicity screening procedures using bacterial systems(Edited by Dickson Liu and Bernard J. Dutka), 147-162(1984)
  15. Tchbanoglous, G., Burton, F. L., and Stensel, H. D., 'Wastewater engineering : treatment and reuse,' 4th ed., McGraw' Hill, NY, 661-665(2003)
  16. Antoniou, P., Hamilton, J., Koopman, B., Jain, R., Holloway, B., Lyberatos, G., Svoronos, S. A., 'Effect of temperature and pHon the effective maximum specific growth rate of nitrifying bacteria,' Water Res., 24(1), 97-101(1990) https://doi.org/10.1016/0043-1354(90)90070-M
  17. Willke, Th. and Vorlop, K. D., 'Nitrification in PVAL beads: Influence of pH and temperature on nitrite oxidation,' Progress in Biotech., 11, 718-724(1996) https://doi.org/10.1016/S0921-0423(96)80097-9
  18. Fdz'Polanco, F., Mendez, E., Villaverde, S., 'Study of nitrifying biofilms in submerged biofilters by experimental design methods,' Water Sci. Technol., 32(8), 227-233(1995)
  19. Zhu, S., Chen, S., 'The impact of temperature on nitrification rate in fixed film biofilters,' Aquacult. Eng., 26, 221-237(2002) https://doi.org/10.1016/S0144-8609(02)00022-5