메밀경작에 의한 논토양 내 아연존재형태 및 탈수소효소-활성도 변화

  • 남윤선 (이화여자대학교 에코과학부) ;
  • 이인숙 (이화여자대학교 에코과학부) ;
  • 배범한 (경원대학교 토목환경공학과)
  • Nam, Yoon-Sun (Division of Ecoscience, Ewha Womans University) ;
  • Lee, In-Sook (Division of Ecoscience, Ewha Womans University) ;
  • Bae, Bum-Han (Department of Civil and Environmental Engineering, Kyungwon University)
  • 발행 : 2008.11.30

초록

아연 폐광지 부근의 논토양에서 메밀(Fagopyrum esculentum)을 이용한 식물상추출공법 적용 전후에 대해 토양 내 아연 형태 및 탈수소효소활성도 변화를 조사하였다. 메밀을 식재한 논토양은 아연농도는 약 600 mg/kg인 고오염 구역과 약 300 mg/kg인 저오염 구역으로 구분되었다. 메밀을 재배한 결과, 메밀은 고농도 구역에서 아연에 의한 성장 저해를 입었으나 토양으로부터 식물유효성 형태의 아연을 흡수하여 식물체내에 축적하였고, 아연 독성으로 저해된 토양 내 탈수소효소활성도를 증가시킨 것으로 나타났다. 2개월 동안 메밀을 재배한 후 근권 토양 내 식물유효성 아연 농도는 고오염 구역에서 약 25% 감소, 저오염 구역에서 약 70% 감소하였다. 근권 토양에서 감소한 식물유효성 아연의 양은 식물체내에 축적된 아연의 양과 유사하여(Recovery 92$\sim$107%), 메밀이 토양 내 식물유효성 아연을 제거 및 축적하였음을 알 수 있었다. 또한 토양 내 총 아연 농도와 토양 탈수소효소활성도는 음의 상관관계를 가진 것으로 나타났으며, 초기에 고오염 토양에서는 저오염 토양에 비하여 토양 탈수소효소활성도가 약 2배 저해되었지만 메밀 재배 후 각각의 근권에서 약 35% 증가한 것을 확인하였다.

Changes of zinc speciation and dehydrogenase activity in soil were studied before and after a field scale phytoextraction by Fagopyrum esculentum at a paddy soil near a closed zinc mine. The concentrations of zinc in paddy soil, in which Fagopyrum esculentum was planted, ranged from approximately 600 mg/Kg(high Zn soil) to 300 mg/Kg(moderate Zn soil). Despite of severe growth inhibition by Zn at the high Zn region, Fagopyrum esculentum accumulated phytoavailable fraction of Zn absorbed from the soil, and enhanced soil dehydrogenase activity (DHA) that had been inhibited by Zn toxicity. After the plant cultivation of 2 months, the concentrations of phytoavailable Zn in the rhizosphere soil at high and moderate Zn region has decreased 25% and 75%, respectively. The amount of Zn reduction in the rhizosphere soil corresponds to that accumulated in plants (recovery 92$\sim$107%), which implies Fagopyrum esculentum removed Zn from the soil. DHA was inversely correlated to the total Zn concentrations in soil. Before plant cultivation, the DHA in the high Zn soil was twice lower than that in the moderate Zn soil. More than 35% of DHA increase was observed in both soils after the application of phytoextraction with Fagopyrum esculentum.

키워드

참고문헌

  1. 한기학, 박창규, 김복영, 김재정, 신제성, 엄기태, 이규승, 이영환, 정영상, 허종수, "농업환경화학," 동화기술, 169-214(1996)
  2. Chaney, R.L., "Zinc phytotoxicity," In A. D. Robson Eds., "Zinc in Soils and Plants," Kluwer, London, UK, 135-150(1993)
  3. 임연풍(최석원, 김억수 역), "의학환경 지구화학," 한국학술진흥재단번역총서, 춘광출판, 127-325(1996)
  4. Nannipieri, P., Gregos, S., and Ceccanti, B., "Ecological significance of the biological activity in soils," In Bollag J.M. and Stotzky G. Eds., Soil Biochemistry, Vol. 6, Marcel Dekker, NY., 293-355(1990)
  5. Welp, G., "Inhibitory effects of the total and water-soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil," Bio. Fertil. Soil, 30, 132-139(1999) https://doi.org/10.1007/s003740050599
  6. Obhard, J.P., "Ecotoxicological assessment of heavy metals in sewage sludge amended soils," Appl. Geochem., 16, 1405-1411(2001) https://doi.org/10.1016/S0883-2927(01)00042-7
  7. Moreno, J. L., Hernandez, T., Perez, A., and Garcia, C., "Toxicity of cadmium to soil microbial activity: effect of sewage sludge addition to soil on the ecological dose," Appl. Soil. Ecol., 21, 149-158(2002) https://doi.org/10.1016/S0929-1393(02)00064-1
  8. Irha, N., Slet, J., and Petersell, V., "Effect of heavy metals and PAH on soil assessed via dehydrogenase assay," Environ. Int., 28, 779-782(2003) https://doi.org/10.1016/S0160-4120(02)00124-1
  9. Tabatabai, M. A., "Soil enzymes," In Mickelson, S.H., Bighan, J .M., Eds., Methods of soil analysis, part 2 Microbiological and biochemical properties. Soil science society of America, Madison, Wisconsin, USA, 775-826(1994)
  10. Baath, E., "Effects of heavy metals in soil on microbial processes and populations (a review)," Water, Air, Soil Pollut., 47, 335-379(1989) https://doi.org/10.1007/BF00279331
  11. Giller, K.E., Witter, E., and McGrath, S.P., "Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils," Soil Biol. Biochem., 30, 1389-1414(1998) https://doi.org/10.1016/S0038-0717(97)00270-8
  12. Kizilkaya, R., "Dehydrogenase activity in Lumbricus terrestris casts and surrounding soil affected by addition of different organic wastes and Zn," Biores. Technol., 99, 946-953(2008) https://doi.org/10.1016/j.biortech.2007.03.004
  13. Nanda, Kumar, P.B.A., Dushenkov, V., Motto, H., and Raskin, I., "Phytoextraction: the use of plants to remove heavy metals from soils," Environ. Sci. Technol., 29, 1232-1238(1995) https://doi.org/10.1021/es00005a014
  14. Tessier, A., Campbell, P.G.C., and Bisson, M., "Sequential extraction procedure for the speciation of particulate trace metals," Anal. Chem., 51, 845-850(1979) https://doi.org/10.1021/ac50044a741
  15. Kersten, M. and Forstner, H., "Chemical fractionation of heavy metals in anoxic estuatrine and coastal sediment," Water Sci. Technol., 18, 121-130(1986)
  16. Baruah, N. K., Kotoky, P., Bhattacharyya, K.G., and Borah, G.C., "Metal speciation in Jhanji River sediments," The Science of Total Environment, 193, 1-12(1996) https://doi.org/10.1016/S0048-9697(96)05318-1
  17. Perin, G., Fabris, R., Manente, S., Wagener, A.R., Hamacher C., and Scotto S., "A five-year study on the heavymetal pollution of Guanabara Bay sediments(Rio de Janeiro, Brazil) and evaluation of the metal bioavailability by means of geochemical speciation," Water Res., 31, 3017-3028(1997) https://doi.org/10.1016/S0043-1354(97)00171-1
  18. Robinson, B. H., Brooks, R.R., H. Gregg, P.E., and Kirkman, J.H., "The nickel phytoextraction potential of some ultramafic soils as determined by sequential extraction," Geoderma, 87, 293-304(1999) https://doi.org/10.1016/S0016-7061(98)00062-7
  19. Maiz, I., Arambarri I., Garcia, R., and Millan, E., "Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis," Environ. Pollut., 110, 3-9(2000) https://doi.org/10.1016/S0269-7491(99)00287-0
  20. Dold, B., "Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste," J. Geochem. Explor., 80, 55-68(2003) https://doi.org/10.1016/S0375-6742(03)00182-1
  21. Li, B., Wang Q., Huang, B., and Li, S, "Evaluation of the results from a Quasi-Tessier's sequential extraction procedure for heavy metal speciation in soils and sediment by ICP-MS," Anal. Sci., 17, i1561(2001)
  22. 장주연, 장윤영, 배범한, 이인숙, "수종 야초류의 카드뮴 내성에 대한 연구," 한국생태학회지, 24, 309-313(2001)