The Characterization of Floc Formation Under Various Pre-coagulation Conditions

응집-막분리 공정 적용시 전처리 응집조건에 따른 용존성 유기물 상(相)변화 특성

  • Jung, Chul-Woo (Ulsan Regional Innovation Agency, Ulsan Industry Promotion Techno Park) ;
  • Son, Hee-Jong (Water Quality Institute, Water Authority)
  • 정철우 (울산산업진흥TP 전략산업기획단) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소)
  • Published : 2008.11.30

Abstract

The objectives of this research are to investigate the mechanism of coagulation affecting UF and find out the optimum conditions of the combined of coagulation with UF membrane filtration for NOM removal. During the mixing period, substantial changes in particle size distribution occurred under rapid and slow mixing condition due to the simultaneous formation of microflocs and NOM precipitates. Therefore, combined pretreatment using coagulation (both rapid mixing and slow mixing) improved dissolved removal efficiency. Also, for combined coagulation to membrane process, flux reduction rate showed lower than only UF process. The rate of flux decline for the hydrophobic membrane was considerably greater than for the hydrophilic membrane. Applying coagulation process before membrane filtration showed not only reducing membrane fouling, but also improving the removal of dissolved organic materials that might otherwise not be removed by the membrane.

응집-막분리 공정의 적용시 전처리 응집공정에서 응집조건에 따라 발생하는 플럭 생성특성을 파악하고 생성된 플럭 특성에 따른 막투과 플럭스의 영향을 살펴본 결과 인공시수와 낙동강 원수에서 전처리 응집공정을 적용시 급속교반 후 용존성 유기물질(자연유기물질)이 미세 플럭의 형성으로 인하여 입자상 유기물질로 전환이 발생하였으며 급속교반초기 10초 사이에 용존성 유기물이 입자상 물질로 전환되었다. 또한 응집제 주입량이 0.025 mM as Al (7.5 mg/L Alum) 이었을 경우 입자 전환율 K값이 크게 나타나고 있었으나 0.05 mM (15 mg/L Alum)이상으로 응집제 주입량이 증가할 경우 K값은 감소하였으며 0.15 mM까지 유사한 값을 보이고 있었다. 낙동강 원수를 이용하여 전처리 공정으로 응집 공정을 적용시 UF 단독공정에 비하여 투과 flux 감소는 상당히 낮게 나타났으며 투과 flux 변화는 응집공정에 의하여 형성되는 입자크기 분포에 의존하였으며 응집조건에 따른 투과 flux 실험결과 급속교반-UF공정과 급속교반-완속교반-UF공정의 투과 flux는 유사하게 나타났다. 막의 재질에 따른 투과 flux 실험결과 소수성 재질의 막에 비하여 친수성 재질의 막이 투과 flux가 높게 유지되었으며 응집제 자체의 금속성분에 의한 막오염 영향은 나타나지 않았다.

Keywords

References

  1. Taylor, J. S., Mulford, A., Duranceau, S. J., and Barrentt, W. M., "Cost and performance of a membrane pilot plant," J. AWWA, 81(11), 52-60(1989)
  2. Dykes, G. M. and Conlon, W. J., "Use of membrane technology," J. AWWA, 81(11), 43-46(1989)
  3. Conlon, W. J., Hornburg, C. D., Waston, B. M., and Kedfer, C. A., "Membrane softening: The concept and its application to muncipal water supply," Desalination, 78, 157-175(1990) https://doi.org/10.1016/0011-9164(90)80040-I
  4. Jacangelo, J. G., Aieta, E. M., Carns, K. E., Cummings, E. W., and Mallevialle, J., "Assessing Hollow-Fiber Ultrafiltration for particulate Removal," J. AWWA, 87(11), 68-75(1995) https://doi.org/10.1002/j.1551-8833.1995.tb06318.x
  5. AWWA Membrane Technology Research Committee, 1998 Committee Report; Membrane Process, J. AWWA, 90(6). 91-105(1998)
  6. Bian, R., Watanabe, Y., Tambo, N. and Ozawa, G., "Removal of humic substances by UF and NF membrane systems," Water Sci. Technol., 40(9), 121-129(1999)
  7. Fane, A. G. and Fell, C. J. D., "A review of fouling and fouling control in ultrafiltration," Desalination, 62, 117-136(1987) https://doi.org/10.1016/0011-9164(87)87013-3
  8. Fu, L. F. and Dempsey, B. A., "Modeling the effect of particle size and charge on the structure of filter cake in ultrafiltration," J. Membrane. Sci., 149, 221-240(1998) https://doi.org/10.1016/S0376-7388(98)00169-0
  9. Jones, K. L. and O'Melia, C. R., "Ultrafiltration of protein and humic substances; effect of solution chemistry on fouling and flux decline," J. Membr. Sci., 193, 163-173(2001) https://doi.org/10.1016/S0376-7388(01)00492-6
  10. Wei, Y. and Andrew, L. Z., "Humic acid fouling during microfiltration," J. Membr. Sci., 157, 1-12(1999) https://doi.org/10.1016/S0376-7388(98)00329-9
  11. Chang, Y. J., Choo, K. H., Benjamin, M. M., and Reiber, S., "Combined adsorption-UF process increases TOC removal," J. AWWA, 90(5), 90-102(1998)
  12. Jang, N. Y., Watanabe, Y., and Ozawa, G., "The study on microfiltration membrane process combined with preozonation," J. JWWA, 71(2), 1-13(2002)
  13. Jang, N. Y., Watanabe, Y., Minegishi, S., and Bian, R., "The evaluation of dead-end ultrafiltration membrane process combined with pre-coagulation/sedimentation," J. JWWA, 70(2), 1-14(2001)
  14. Watanabe, Y., Kasahara, S., and Iwasaki, Y., "Enhanced flocculation/sedimentation process by a jet mixed seperator," Water Sci. Technol., 37(10), 55-67(1998)
  15. Jung, C. W., Son, H, J., and Kang, L. S., "Effects of membrane material and pretreatment coagulation on membrane fouling: fouling mechanism and NOM removal," Desalination, 197, 154-164(2006) https://doi.org/10.1016/j.desal.2005.12.022
  16. Gregory, J. and Duan, J., "Hydrolysing metal salts as coagulants," Pure Appl. Chem., 73(11), 1-10 https://doi.org/10.1351/pac200173010001
  17. Amirtharajah, A., "Rapid mixing and the coagulation process," Proceedings of AWWA Annual Conference, Kansas(1987)
  18. 김은주, 정철우, 최시환, 강임석, "정수공정시 급속혼화조건이 응집효율에 미치는 영향," 대한환경공학회지, 23(4), 631-640(2001)
  19. Snoeyink, V. L. and Jenkins, D., Water Chemistry, John Wiley and Sons, NY(1982)
  20. Mhaisalkar, V. A.. Paramasivam, R., and Bhole, A. G., "Optimizing physical parameters of rapid mix design for coagulation-flocculation of turbid waters," Water Res., 25(1), 43-52(1991) https://doi.org/10.1016/0043-1354(91)90097-A
  21. Douglas, M. O., Gary, L. A., and Chowdhury, Z. K., "Characterization of natural organic matter and its relationship to treatability," AWWA Research Foundation and American Water Works Association(1993)
  22. Edward, J. B., Goel, S., and Hozalski, R. M., "Removal of natural organic matter in Biofilters," AWWA Research Foundation and American Water Works Association(1995)
  23. Jonsson. A. S. and Jonsson. B., "The influnce of nonionic and ionic surfactants on hydrophobic and hydrophilic ultrafiltration membranes," J. Membr. Sci., 56, 49-76(1991) https://doi.org/10.1016/0376-7388(91)85015-W