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Terminal 5, London Hearhrow The main terminal building envelope
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(2@ 2) Dramatic full-height circulation space.
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Central arch rafter

(2@ 4) Structural separation of envelope and content.
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(JE' 5) minimal intrusion of facade vertical structure. / TIALE $=ZIERHO| Z|A 3|
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(2% 6) Roof assembly sequence.
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(22!7) Joint at head of south facade. / && TAIE HEZ|HE A

(3@ 8) Rafter section arriving on site.

Transport factors

The dimensions of this structure are such that almost every
design decision included some reference to how the steel
would be transported to site. There was no space for storage
and so every load had to be planned so that it could arrive on
site and be unloaded directly onto the work face.

The largest sections of rafter weighed around 50 tonnes and
were up to 38.8m high. Other rafter sections were 27m long.
They were fabricated in Finland and brought to the UK by ship,
where they took to the road (Fig 8). The torso nodes were
slightly lighter at 38 tonnes, but they did require purpose-made
transport frames so that they were in the correct orientation for
assembly as soon as they arrived on site.

21X / Erection method
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(a8 9) Roofing material in place prior to erection.
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(3@ 10) Central section clad and prestressed, May 2004.
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Modal buckling analysis

The T5A roof is a massive arch and

carries huge compression forces. It

is essential to prevent buckling both

of its individual parts, and of the

structure as a whole. In the past, Buckling analysis model ] R L
engineers typically used rules of in GSA. 7 £ o
thumb, simple calculations, and s
educated guesswork to design

against buckling, but here, the team : :

carried out a modal buckling analysis £ : ; 5
(Fig 12) to predict the most critical

possible buckling modes, and then

processed the mode shape data to : } : [ !
give sets of design forces. Designing S"‘“D_h': buckling model ;
for these forces ensured that there is predicted by the analysis. ]—-
a consistent reserve of strength S J /| []

against buckling, without wasting = e ] l
money on providing strength where - = | | L i \
it is-not needed. T \ : i —'g_ ]

This method gives safer and more J i ‘
realistic results than the use of " I

traditional notional restraint forces < \ | l ‘ l\
for the rafters in their minor axis, and ) S ; = i | /

enabled slimmer leg and arm

sections because of the partial fixity

provided at main nodes. Moreover, it i
allowed Arup to quantify the effective =
length of the major axis buckling c) Complex buckling mode predicted
mode of the main rafters rather than by the analysis.

Justiakingiagiecucaled Oless; 12. Modal Buckling analysis. (2@13) Bracing in roof plane and abutments.

(2@12) Modal Buckling analysis. / ZZsAl BRI
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Dynamic time history wind analysis
This structural form moves most under asymmetrical or

uneven wind loading. The team had to protect the fagade
and roofing from damage by excessive movements, but it
would have been uneconomical to make highly pessimistic
assumptions about how wind pressures might be distributed.

Data acquisition and processing technology have advanced
enormously in recent years, and it is now possible to record
how wind pressures vary from second to second across an
array of pressure taps on a wind tunnel test model. Arup’s
Advanced Technology Group took this data and built a
computer model (Fig 14) of how the roof would move from
moment to moment, taking into account the varying wind
pressures, its structural behaviour, and its inertia. This new
technique gave a more accurate estimate of deflections in
service than was ever possible before. As a result, the team
saved 800 tonnes of steel by reducing the rafter flange
thickness from 85mm to 70mm.

(2@ 14) Single frame from time history dynamic wind analysis.
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(3@ 16) Connection of arm to torso. (2@ 17) Casting removed from sand mould. (2@ 18) Cutting of timber patterns.
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(a& 19) Computer modelling of casting solidification. AR o e AR FelA =

Casting structural steel

The success of a structural steel casting depends on its shape because the steel shrinks o 4= Q= AREAAIE ANdsfolt Jict,
as it solidifies, and it is essential to allow new molten steel to flow in to make up for the lost -

S N A ESS) A
volume. The ideal would be a carrot shape with molten steel flowing in from a header at the E24 FRe] AFACRE5E A
thick end. The shapes of all the cast components were developed in consultation with the Ho| B 4 9 AE L 2ZbojA
foundry (William Cook); the design team developed 3-D computer models and Cook then cel e T A e T
used its numerically controlled five-axis cutter to cut timber patterns directly from the A7k At BEL W22 38 AY

computer files.
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(2 23) Close-upofshearkey. (& 24) Rafter assembly.
Rafter splices
One of the more subtle advantages of the prestressed high ties is that the splices in the
central arched section of the rafters always carry significant net compression. Therefore, they
can transfer forces from section to section in bearing, rather like the joints between the stones
& ; of a gothic cathedral. No welding is required. 120mm diameter “male” and “female” shear

o ) ) connectors Interconnect during erection so that the whole rafter fits together like giant Lego
(a2l 22) Conjunction of rafter with top of abutment frame. bricks (Figs 23, 24). Some bolts are required for extreme wind load cases but these can be

accessed from inside the rafter section after assembly and off the critical path.
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(2% 25) The main terminal building in semmer 2005. / 20053 ®{E29| F Ej0|g AHE
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