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ABSTRACT

An efficient sampling method of computer simulation is reviewed. Using the method, several 

thermodynamic states can be investigated at a time in a single simulation. It is due to the ability 

of the method to explore the relevant parts of configuration space equally for every state being 

investigated. The method can be used in simulations of complex systems such as biopolymers 

which are still greatly hampered by the multi-minima problem. In this article I present a brief 

theoretical review of the method and illustrate how to realize it in the simulations.

요  약

컴퓨터 시뮬레이션의 효율적인 한 방법을 재조명하였다. 이 방법을 이용하면, 여러 열

역학적 상태들을 단 한 번의 시뮬레이션으로 조사할 수 있다. 그렇게 할 수 있는 것은, 

조사하고자 하는 모든 상태들에 대해 관련 배열공간을 골고루 탐사하는 방법의 능력에 

기인한다. 이 방법은 아직도 다중최소 문제가 여전히 큰 장애로 남아 있는 생체고분자와 

같은 복잡계의 시뮬레이션에도 이용할 수 있다. 이 논문에서 방법의 이론을 간단히 재검

토하고 어떻게 시뮬레이션으로 실현하는지 예를 들어 설명하겠다.
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1. INTRODUCTION

The computer experiment employing Monte Carlo (MC) or molecular dynamics (MD) is 

now a popular tool in science. Despite the recent development of supercomputing power, 

simulations of larger complicated systems such as biopolymers are still hindered by the 

multi-minima problem. It is very hard for conventional MC and MD methods to sample the 

relevant configurations properly at low temperatures. This is because simulations at low 

temperatures would likely be trapped into a few of a huge number of local-minimum-energy 

states so that the results will strongly depend on the initial configuration. One way to 

surmount the difficulty is to sample configurations upon a non-Boltzmann weighting function 

instead of the conventional Boltzmann weighting function so that the simulation may escape 

from trapped local minima.

There have been proposed several non-Boltzmann sampling method; the umbrella sampling 

method (USM) [1-4], multicanonical method [5,6], multiensemble sampling method (MESM) 

[7-9], entropic sampling method (ES) [10,11] replica-exchange method (REM) [12,13], etc. The 

non-Boltzmann samplings method are powerful when their weighting functions are properly 

chosen, but for the above methods except the MESM and the REM, they are not a priori 

known and have to be determined by iteration of preliminary simulations. This process is, in 

general, nontrivial and very tedious for complex systems. 

In the REM, on the contrary, the weighting function is given as the product of Boltzmann 

factors. A number of non-interacting replicas of a system at different thermodynamic states are 

simulated independently and simultaneously by the conventional MC or MD. Every few steps, 

pairs of replicas are exchanged with a specified transition probability. However, the method 

has a difficulty that the other methods do not encounter as the number of degrees of freedom 

of the system increases, the required number of replicas also greatly increases, whereas only a 

single replica is simulated in the other methods. This demands a lot of computer power for 

complex systems.

In the MESM, on the other hand, the weight function is given as a superposition of 

Boltzmann factors and only a single replica is simulated. Originally, as like as the USM, the 

method was developed for the accurate estimation of the free energy and has not been applied 
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yet to studies of complex molecular systems such as proteins. Recently, we have demonstrated 

the feasibility of extending the method to simulate the protein folding. [14] In this paper, we 

present a brief review the method and illustrate how to realize it in the applications to the 

hydration free energy and the protein folding.

2. THEORY

For the sake of a logical argument, we begin by reviewing the basic theory of 

non-Boltzmann sampling scheme. Suppose that there are n similar systems with potential 

energies Ul at temperatures Tl, l = 1,…,n,  and one is going to investigate them in a single 

simulation. It is impossible, in general, to obtain data of other n-1 system from the 

conventional MC or MD simulation for one of the systems since the parts of configuration 

space sampled upon the Boltzmann weight in the simulation are not broad enough to cover all 

the parts of configuration space relevant to the other systems. 

For the successful simultaneous investigation, configurations should be sampled upon a 

general non-Boltzmann weighting function W which covers all the parts of configuration space 

relevant to the investigated systems. The probability density of configurations, lρ , for system l 

is related with the probability density of sampled configurations, wρ , by
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where lll kTU /=Φ  with k being the Boltzmann constant, Ωd represents the volume 

element in the configuration space and W〉〈  denots an average over sampled configurations. 

The canonical ensemble average of a physical quantity X for system l is calculated by
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With an appropriate choice of W, one would be able to investigate several systems in a 

single simulation. But, the matter is how to choose W appropriately. The efficiency of a 

non-Boltzmann sampling simulation is determined by the choice of W. The job without an a 

priori recipe for W is uncertain.

In the MESM, the weighting function W is given by 
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In Eq. (3), p is an arbitrary constant which does not affect the calculation results. The 

dependence of simulation results on p has been checked by setting p = 0.5, 1, 2, 4 in our 

previous work and no serious dependence was observed. [14] On the contrary, the adjustable 

parameters Cl critically determine the distribution of sampled configurations. For example, if 

one took Cl >> (<<) Cl for every i ≠ l and , the relevant configurations for the system l 

only will (won't) be sampled.

Originally, Eq. (3) with p = 2 was derived by the functional minimization of the sum of 

the squares of expected relative errors in the denominator in the most right hand side of Eq. 

(1) so that the canonical distribution lρ can be calculated with equal accuracy for every 

system.[7,8] As shown in the original derivation, it is optimal for the simulation when Cl = Fl 

+ const where Fl is the temperature scaled free energy of system l. Note that Eq. (3) 

becomes a superposition of the normalized canonical distributions of configurations relevant to 

individual systems then;
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Note that W is just the sum of normalized canonical distributions of configurations relevant 

to individual investigated systems when one takes p = 1.
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3. REALIZATION

In order for the method to work, one needs to know the values of the free energies of 

investigated systems. They can be obtained by calculating
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where ΔFlm = Fl – Fm. Thus, starting with an arbitrary set of values for Cl, the iterative 

replacement of the value by the calculated of ΔFlm in a simulation leads to the self-consistent 

condition of Cl - Cm = ΔClm = ΔFlm. Let us illustrate this by taking an example of sampling 

two ensembles in a single simulation as shown in Fig. 1. The two systems are an uncharged 

spherical particlein water (system 0) and a partially charged one by 0.3e in water (system 1). 

The free energy difference of the systems is -12, but it is not a priori known. Preliminary 

runs for the adjustment of ΔC10 were done, started with ΔC10 = 0 the value of ΔC10 was 

replaced iteratively by the estimate of ΔF10 obtained in the preceding run. In each run, 107 

configurations were generated. The estimates of ΔF10 after the second run oscillate about its 

true value; less than 5% deviation. In Fig. 1 are plotted the distributions of configurations 

sampled in the preliminary runs. They confirm the theory that two ensembles are equally 

sampled when the self-consistent condition is satisfied. 

The method has been applied to the free energy of charging a sodium ion in water. [9] 

Eleven states, whose charges on the ion are from 0 to 1e in 10 steps of 0.1e, are included 

for calculating the free energy. A set of near self-consistent values for Cl is obtained by 

routines of two-ensemble sampling runs for the pairs of nearest states first, in each of which 

106 configurations were generated. Using the set of these values, 3 ⅹ 107 configurations were 

generated by a run of sampling 11 ensembles to calculate free energies. An additional run of 

generating 5 ⅹ 107 configurations was done to confirm that the self-consistent condition is 

satisfied. Figure 2 shows the results.
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FIGURE 1. Distributions of the ionic electric potential due to water molecules obtained in the 

preliminary runs of sampling two ensembles. As the preliminary run with 

replacement of ΔC10 by ΔF10 is repeated, the parts configurations relevant to 

individual systems are equally sampled; (a) → (b) → (c) → (d). The thick solid 
curves are the sampled distributions and the thin dashed curves are the 

normalized canonical distribution calculated in simulations.

Recently we also applied the method to the folding of small proteins.[14] A simple 

united-residue (UNRES) [15] potential model was used in the simulations. In the work we 

started with simulations of sampling the ensembles of two high temperatures at which the 

protein remains unfolded. We increased the number of ensembles being sampled one by one 

lowering thetemperature to the folded phase. Figure 3 where the resulting distributions of 
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energy and RMSD(root-mean-square deviation) for betanova are plotted shows that the 

ensembles of the temperatures being invetigated are sampled equally.
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FIGURE 2. Distributions of the ionic electric potential due to water molecules obtained in 

the runs of sampling eleven ensembles; (a) the distribution sampled in the 

simulations using a set of values for Cl that is obtained by routines of 

two-ensemble sampling runs for pairs of nearest systems, (b) the distribution 

sampled in the simulations with replacement of Cl by Fl  that are calculated in 

the simulation (a).
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FIGURE 3. Distributions of energy and RMSD obtained in the simulations of the folding of 

betanova using the MESM.
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4. SUMMARY

The multiensemble sampling method has been reviewed briefly with demonstrating the 

method is able to explore all the parts of configuration space relevant to the systems of 

interest. In the method, the weighting functione W is a superposition of Boltzmann factors of 

the systems. It is simple and easy a set of optimal values for the parameters of W. The 

method can be used in simulations of complex systems which are still greatly hampered by 

the multi-minima problem. We are extending the method to simulate the folding of proteins.
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