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ABSTRACT. In this paper, we introduce and study a new class containing absolutely
summing multilinear mappings and polynomials, which we call multiple weakly summing
multilinear mappings and polynomials. We investigate some interesting properties about
multiple weakly (p;q1, - - , gx)-summing multilinear mappings and polynomials defined on
Banach spaces: In particular, we prove a kind of Dvoretzky-Rogers’ Theorem and an ideal
property for multiple weakly (p;q1,--- ,qr)-summing multilinear mappings and polyno-
mials. We also prove that the Aron-Berner extensions of multiple weakly (p;qi,-- -, qk)-
summing multilinear mappings and polynomials are also multiple weakly (p;q1,--- ,qxk)-
summing.

1. Introduction

Throughout this paper K denotes either the complex field C or the real field R.
If the field is not specified the results are valid in both cases. Let E, Ey,--- , Ex,
and F' be Banach spaces over the field K. We write Bg for the unit ball of E. The
dual space of F is denoted by E*. Let k € N. We denote by L(F1,---, Ey : F) the
Banach space of continuous k-linear mappings of Fy X --- X Ey endowed with the
usual norm

|All = sup {[|A(z1,...,2%)| :2; € Bg,,j=1,...,k}.

We denote L(E,--- ,E : F) by LI*E : F). Let A be in L(*E : F). We define
A\:E—>Fby /T(x) = A(z, - ,z) for x € E. A mapping P : E — F is said to be
a continuous k-homogeneous polynomial if P = A for some A € LFE:F).

We denote by P(¥E : F) the Banach space of continuous k-homogeneous poly-
nomials of E into F' endowed with the polynomial norm ||P|| = sup,cp, [|P(x)||.
We denote P(*E : K) by P(¥E). We refer to [7] for a general background on the
theory of polynomials on an infinite dimensional Banach space.

Throughout this paper we will assume 1 < q1,--- ,qx < p < 00. We denote the
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Banach space
o0

L (F) = { W)+ Q llwall”)P < oo}

=1

with the norm || ()22, [|57°"9 := (3272 [|ly:[|P)'/?. We denote the Banach space

LERF) = { (y)Zy + sup Zly DIYP < oo}

yEBF* =1

with the norm
I ()2 [l == sup Zly )PP,
Yy GBF* i=1

Motivated by the growth of the theory of multilinear mappings and polynomials
on Banach spaces, many authors ([2], [3], [5], [8]) began the study of the p-summing
multilinear mappings and polynomials between Banach spaces. A k-linear mapping

T:Ey x---xE,— Fis (p;q,--- ,qr)-summing if there exists a constant K; > 0
such that, for every choice of elements =] € E; (j = 1,--- ,k,1 < i € N), the
following relation holds:
(1.1) I (T, af) )2y [l5rend = ZHT(z},m e [ e
< K| @) gt (@) Iwe“k-
In this case, we define the (p;q1,- -+ , qr)-summing norm of 7' by

T(piqu,qn) () := inf{ Ky >0: (1.1) holds }.

In connection with the classical definition of (p;qi,- - , gr)-summing, we intro-
duce a new definition of weakly (p; g1, - - ,qx)-summing as follows: a k-linear map-
ping T : Eyx---xEy, — Fis weakly (p;q1,- - , qr)-summing if there exists a constant
K5 > 0 such that, for every choice of elements z} € E; (j =1,--- ,k,1 <i € N),
the following relation holds:

(12) I (T(ai, o 2f) )32y 1% = sup [ Dl (TGt 2P 17
Y €Bpx =1
< Ko || (@) eIl (@) [t
In this case, we define the weakly (p;q1,- -+ , qi)-summing norm of T by
W&;qh”_ ,qk)(T) :=1inf{ K2 > 0: (1.2) holds }.
We denote qul ,qk)(El"" ,Er : F) by the class of weakly (p;q1,---,qk)-

summing multlhnear mappings from Fq X - - - X Ej into F' with the norm T(E;'QI )
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A weakly (p;q,- - ,q)-summing mapping will be called weakly (p, q)-summing and
we write 7% | for the associated norm. Moreover, a weakly (p, p)-summing mapping
will be called weakly p-summing and we write 7% for the associated norm.

P
Given k and mq,--- ,my € N, let (y;,,... ;)i - 2"™% denote a multi-index se-

i1, ig=1
quence in F' with the index ¢; varying from 1 to n;j (1 < j < k). Note that
S e, means that S, Y gy

A (p;qu,- -+, qr)-summing k-linear mapping T : E7 X --- X Ej, — F' is multiple
(piqus- -, qr)-summing [2] if there exists a constant K3 > 0 such that, for every
choice of natural numbers m; (1 < j < k) and for every choice of elements ;vg], S
E; (1 <ij; < 'm;), the following relation holds:

my,,mp
(13) |1 (T(ah, - ) rams ors = Y T, 2 )P 17
i1, ip=1
k k k
< Ky | @D get el @DEy gt
In this case, we define the multiple (p; g1, - , ¢x)-summing norm of T' by

miosl (1) =inf{ K3 >0: (1.3) holds }.
Bombal et al. [2] introduce multiple p-summing multilinear mappings. Using them
they proved several generalizations of Grothendieck’s fundamental theorem of the
metric space of tensor products.

In connection with the definition of multiple (p;qi,--- ,qx)-summing, we in-
troduce a new definition of multiple weakly (p;q1,- - ,gg)-summing as follows: a
weakly (p;q1,- - ,qg)-summing k-linear mapping T : Ey X -+ X E — F' is multi-
ple weakly (p;q1, -+ , qr)-summing if there exists a constant K4 > 0 such that, for
every choice of natural numbers m; (1 < j < k) and for every choice of elements

xfj € E; (1 <i; <m,;), the following relation holds:

M1, M
’

(L) (Tl ) Vi et = sup [0y (Ta,, - 2P 1P
Y EBrx gy =1

< Ka- | @) llgett Il ()2 lgee.
In this case, we define the multiple weakly (p;q1,- -+ , qr)-summing norm of T by

gprul=w () —inf{ K4 > 0: (1.4) holds }.

(P3q1,++ ,qk)

We denote E?;?ql;f’_ qk)(El’ .-+, By : F) by the class of multiple weakly (p; q1,- -, qr)-

summing multilinear mappings from E; X - - - X Ej, into F with the norm #™% =%

(P3q1,+,qk)"
A multiple weakly (p;q,---,q)-summing mapping will be called multiple weakly

(p, q)-summing and we write szile)fw for the associated norm. Moreover, a multiple

weakly (p,p)-summing mapping will be called multiple weakly p-summing and we
write 77;”“[_“’ for the associated norm.
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We denote by L., ... q0)(E1, -+, By« F) and Lomut qk)(El’ <o By F) the

(p3q1»:

spaces of absolutely (p;qi1,- -+ ,qxr)-summing and multlple (p;q1, -+, qx)-summing
k—linea'r mappings with the norm 7(p.q, ... 4,) and szzlh__ ) respectively.

It is obvious that

l l .
'C?Z’?th;-' 7%)(E1’ By F) C 'C?;Q:h ¢ qk)(Elv By F)
C ‘C(p(h qk)(E1,~~‘,EkSF)C£(E1, ,EktF),
and that
mul—w l
”T” < 71-7(“;.(117.” ,Qk)(T) = W(P;QL"',%)(T) < ?;7;1, ,Qk)(T)

for every T € E";“qll ) El, - B F).

Similar to tile case of multlhnear mappings, we introduce a new definition of
multiple weakly (p; g1, - , qx)-summing to homogeneous polynomials as follows: a

k-homogeneous polynomial P : E — F is weakly (p, q)-summing if there exists a
constant C' > 0 such that, for every choice of elements z; € E (i € N), the following
relation holds:

(1.5) I (P(2:))iZy [y = sup Zly DI P

y' EBpx i=1

< O (] @ I,
In this case, we define the weakly (p, q)-summing norm of P by
o (P) =1inf{ C>0: (15) holds }.

We denote P&’) q)(kE : F) by the class of weakly (p,¢)-summing k-homogeneous

polynomials from FE into F with the norm 77& o A weakly (p, p)-summing poly-
nomial will be called weakly p-summing and we write m,’ for the associated norm.
A weakly (p, g)-summing k-homogeneous polynomial P : E — F is multiple weakly
(p, q)-summing if the associated symmetric k-linear mapping P is multiple weakly
(p, q)-summing. We denote P(mzl) “(FE : F) by the class of multiple weakly (p, q)-
summing k-homogeneous polynomials from F into F' with the norm WZ‘Z’) o)
It is obvious that
l—w k. k. k.
’PZZZ) Y("E: F) C’Pé’mq)( E:F)CPFE:F),
and that
1Pl < = (P)
for every P € PEZZZ) YkE:F).

In section 2, we investigate some interesting properties about multiple weakly
(Piq1,- - 7qk)—summing multilinear mappings and polynomials defined on Banach
spaces: In particular, we prove a kind of Dvoretzky-Rogers’ Theorem and an ideal
property for multiple weakly (p; g1, - , qx)-summing multilinear mappings.
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In section 3, we prove that the Aron-Berner extensions of multiple weakly
(p;q1,- -+ , qx)-summing multilinear mappings and polynomials are also multiple
weakly (p;q1,- -+, qx)-summing.

2. Properties of multiple weakly summing multilinear mappings and
polynomials

Theorem 2.1. P € P q)( E:F) if and only if P € L
the corresponding k-linear mapping. Moreover, we have

(pq)( E : F), where P is

. (2(%—1)k)k
Mgy (P) < 7o, (P) < Kl To.a) (P):
Proof. («<): Tt is obvious.

(=): Let (z})2,,---,(aF)2, € Bléueak(E). By the triangle inequality,

ICerad + -+ enaf )22 [17°" < Mlew)Z2allge® + - + [l (eraf )32 7% < &

for every €1, - , e = £1.
(26" Vk)

Claim: ||( P(xll, co k) e Hweak < TR )

Ead

Indeed, we have
1P, saf) )2y flyee”

= sup | Z\ y'(P(xll,... ,zf)) k& ]1/17

y' €Bpx =1

(Y] Y aay (Plart + v aa) P

Y €Bpx i=1 €1, ,ep=%1
(by the Polarization Formula)

]_ o ’ P
< g S [0 X (Pt taah) ) 1
y' EBp+  i—1 €1, ep==1
1 o0
= ol 2 s (oY (Plasi+daaf) [ ) TV
: 61’...7€k:i1y/€BF* i=1
1 w oo w
< g oL Y ClCast+-+aak )2 Iy ) 177
' €1, ,ep==%1
1 w kp 11
< g Pl Y KT
17"1€k::|:1
(27 Vk)"
= k! W(p’q)(P). |:|
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I
Note that 2(z~DF . T < R . By a similar proof of Theorem 2.1, we see that
P € Pyg(FE: F)if and only if P € L, ,(*E : F). Moreover, we have

. (2(%*1)k)k
T(pg)(P) < (p,g)(P) < Tﬁ(p,q)(P)'

1 1
Examples. (a) Let — — — < 1/2. We show that L, o) (E : E)#L{, (E : E) for
q p ’

every infinite dimensional Banach space £ and 1 < p < co.

Claim: idg € Lf, \(E: E)\L(p,q)(E : E).

Indeed, obviously idp € L}, (E : E). If idg € L, q)(E : E), then id% = idp
would be compact, which is a contradlctlon
() Let k/(k—1) < q <p < 0.

We show that L% (Fly/q-1)) # L(*lgyq-1)) (k >2)

Indeed, we define a continuous k-linear form A : l’;/(qfl) — K by

A( @My, @) Zx“ ),

Claim: A is not multiple weakly (p, ¢)-summing.

Let mq,---,mr € Nyeq,--+ ,e,,--- be the canonical unit vectors in I,/ (q—1)-
Let m € N,e1, -+, en, be the first m canonical unit vectors in lg/(,—1). Then
oo
k . ! _
le)Zallg® = sup D olr(e)) =1
e €Bx 7B i=1

But we have

ICAes,, - ea) it 2 Moot = mindma, - ma} — oo,
as mi, - , My — 00.
By definition, A € P(qu/(q_l))\’l)gzl)_w(qu/(q_l)) (k> 2).

Lemma 2.2. Letl <t < s < oo. Then

sup SO (el = m
v €Bi, i—1

Thus

sup Z |z,|" = oco.

Zn 1 |Tw‘ —1

Proof. Let m € Njey,--- ,e, be the first m canonical unit vectors in l5. Let
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’ ]. ; ’ m ! s—t
y = <m> (e1 4+ -+ em). Then [ly'lls = 1 and 7 [y ()t = m™F*. Tt
completes the proof. O
Remarks. Let 1 < ¢ <p < 0, max{l7 k(ql)} <r<p/lp-1).
q-—
Claim: L7 (Flyyq-1y : 1) # L(*lgyq-1y : 1) (k> 2)
Indeed, we define a continuous k-linear mapping A : lé“ Jg=1) Il by
A( @)y @)z ) = @2l
We claim: A is not multiple weakly (p, ¢)-summing.
Let mq, -+ ,myp € N, €1, ey, -+ be the canonical unit vectors in l,,;_1)-
We have
1CAes - ea) Din i Il oo
my, My
= sup Z | Y (A(eilv"' ’eik)) |p
y’GBli :BI,,./(,,,,D Q1,0 ,ip=1
min{mq, - ,mg}
= sup Z ly (e;)|P — oo (by Lemma 2.2),
v'eB i=1
as mi, -, my — 00, while [|(e;) |9 = 1, || (&) " = 1.

By definition, Ac 'P(qu/(q,l) : lr)\szl)iw(qu/(q,l) ) (B >2).

Lemma 2.3. Let 7 € Ef,--- ,x;, € B}, andu € L (Egxy1: F). Then the k-

(P,qK+1)
linear mapping T : By X -+ x By — F : T(x1,- -, 2p41) = 25 (21) - - - o) (@r)u(Trt1)
is multiple weakly (p;q1,- - , Qr+1)-summing and
—mul
g ()< () ] il

Proof. Let xf €E; (ieN,j=1,---,k+1) be such that

k
D) Zallge™ < 1o @ hEallgest < 1.

Then ||z]| < 1 for every (i € N,j = 1,--- ,k+1). We have, for m; € N (j =
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1, kE+1)
(T, )iy e
my,e,Me41
’ k
= sup [ ) |y (TP 1V
Y EBrr gy ipia=1
My ME41
k ’ k
= sup [ ) fai(@)IP e ek @)y (uel )P 1Y
Y EBrs iy, ipa=1
My, , Mg
k
< [0 @) g )P Y sup Z\y P e
i1y =1 y'€Bpx =1
k
< Culef ™) )Rl - =il -
M, Mg —1 S =
D D D LT A Gy Z k N e
i1, i —1=1 =1
ma M
< T @ - Ikl - D)2 e - [ Z le( 0| A € | L
’Lk 1= =1
My, ,MEg—1
S (1) R 4 R N 1 €2 | L £ Y € L
i1, ik —1=1
< Tlpgern) (@) - Izl [l < oo O
By a similar proof of Lemma 2.3, we see that: let ] € Ef, - -,z € Ef and
u € £(p7qk+1)(Ek+1 : F). Then the k-linear mapping T : E1 X --- X B, — F :
T(z1, - ,xp1) = x5 (z1) - xp(xr)u(zre1) is multiple (p; g1, - -+, qre1)-summing
and
l
W(mpzth,'” ka+1)(T) < 7T(pﬂk+1)(u) : Hx’{H te HxZH

Recall that the weak Dvoretzky-Rogers Theorem ([6], Theorem 2.18) shows
that for every infinite dimensional Banach space F, there exists (y;)i2; €
1weak (F)\Istrond(F). We prove a kind of Dvoretzky-Rogers’ Theorem for multi-

ple weakly (p;qi1,- - ,qr)-summing multilinear mappings and polynomials.

Theorem 2.4. (a) If Ey,--- , Ey are finite dimensional Banach spaces and F is a

Banach space and k € N, then Ezgﬁzlhm g (B Ep i F) = EZZ’;ZI bt qk)(El’ <L By
F) =L 0B Be : F) = L(Ev, -+ By o ). The polynomial version is

also valid.

(b) If Ey,--- ,E, F are infinite dimensional Banach spaces and k > 2, then

E";le v qk)(Elf" By 2 F) # Lipigy,qn)(B1, -+, By o F). The polynomial ver-

ston is also valid.
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Proof. (a): Suppose that dim(E;) = n; for i = 1,--- k. Let {ei,--- el } and
{(ed)*, -+, (eh)*} be basis for E; and Ef for i = 1,---,k, respectively. Let
T e L(Ey, - - ,E: F). Then for 21 € Ey,--- , 21 € Ej, we have

ni ng
Ty, ,m) = T (eh) (@el > (eh ) (aw)ek, )
11=1 =1
N1, Nk
= > (&) (@) (eb) (@) Tel,, - vel)
i1, i =1

Thus T has finite rank.
Claim: T is multiple (p;q1,-- - , gx)-summing.
For simplicity in the notation we assume that

T(xy,- ,xk) =xj(x1) - xp(zg) yo (for &1 € By, -+ ,x € Fy)

for some z} € E; and someyo € F. Let m; Gij €EE; (ieNj=1,--- k),

such that ()22, 5274 < Lo (a2 I3 < 1. Then /] < 1 for every
(ieN,j=1,---,k). Wehave
|| ( ( Liyy e 71'5;9) )zl,»-,zk 1 Hstrong
My, M
= [ > 7@, )P 1P
i1, ip=1
My, Mg
= [ D @)P i@ )P lwlP 1P
i1, ip=1
mi, -, ME—1
i1y yig—1=1 k
mi, -, MEg—1
e [ o 1 o S B SN ot €9 | LY £t G| L
i1, i —1=1
my,,mp_1
< ol =il -1 D a@i)P - g P Y
D1, 40 —1=1
< ol - llwgll -+ - =] < oo.

Thus £*(p;q1, -+ ,qx)(F1, -+ , Ex : F) = L(F1, -+, Ey : F). Since

L™ piqr, - qr)(Br, - Ep i F) C Egﬁlqu)(Eh"‘aEk5F)
C Ligrean (B Byt F)

- E(El, ,Ek:F).
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(b): Let z* € Ef,yo € F. We define a bounded linear operator v : Ey — F by
u(z) = z*(z)yo for x € Ej,.
Claim: u € L™~ (E}, : F)

(p,ax)
Indeed, for [|(z;)52, ||we** < 1, we have

I (u(@a))iZy (e

- [ S = s ol Yl

v'EBp =1 y' €Bp~
< ol l@a)Zally e < llyoll < oo
Fix z7 € EY,--- ,x{_; € E}_,. We define a continuous k-linear mapping 7T :

E1X"'XEk~>Fby
T(x1, - ,xk) =2y (x1) - xf_q(Tr—1) - ulzg) (2 € BEyi=1,--- k).

By a result of Matos ([8], Theorem 5), T' ¢ L(p.q, ... .q0) (E1, -+, Ex : I). By Lemma

23, TeLy ™ (Ei-- Ep:F). O

Proposition 2.5. Consider a k-linear mapping T : E1 X --- X By — F. The
following are equivalent:

mul—w . .
(a) TeLm= (B By:F);

(b) for every choice of elements ! € l};’je“k(Ej) (i € N1 < j < k), we have
(T(@d, o @h) )i =1 € LR (N ).

i1 y Vi) Jin,

In that case, the induced multilinear mapping

T 10 F(Ey) x - x 10 (By) — 1" (NF; F)

given by T( (e} )5y. - (2h)5ony ) = (T(ahy, o 1a) ). ey is continuous
and satisfies |T|| = Wg?ﬁ]ll_f"’ qk)(T).
Proof. Tt follows from the definition. O

Proposition 2.6. Consider a multilinear mapping T : F4 X --- X Ey, — F. The
following are equivalent :

mul—w . .
(a) TEﬁ(pql ‘Zk)(El’... B F);

(b) there exists a constant K > 0 such that for every choice of natural numbers
m; (2 < j < k) and for every choice of elements x] € l“’eak(E-) 2<j<

k,1 <ij <mj), with ||(z]. )Z]_1||weak < 1 we have that the associated linear
operator S : 1 — l;"eak({l cyma} X o x {1,--  mg}; F) given by

i/ Sl =1
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is (p, q1)-summing and satisfies

(#) g (S) < K.

In that case, 7, . (T) =inf{ K >0: (x) holds }.
Proof. Tt follows from the definition. O
Theorem 2.7. (a) LM (By, By F) L8, . o (Br,ooe By i F) re-

mul—w

k) [W(p;qh... ) respectively

spectively | is a Banach space under the norm w(p,ql

].

(b) P&,q)(kE : F') is a Banach space under the norm (.

Proof. (a): Let (T,,)52; be a Cauchy sequence in E?;“qll It qk)(El’ <+« By : F). Since
1 o0 | T = Ton |l < limyy oo 774 (T, — Ty) = 0, (T},)2%, is a Cauchy
’ ’ (P3q1, 5qx) n=1

sequence in £(E1, <+« ,E : F). Since L(Ey,--+ , By : F) is complete, there exists
some T € L(Ey,--- , Ey : F) such that ||T,, — T|| — 0.

mul—w .
Claim: TEE(p’qh qk)(E1,~-~ JEr : F).
By Proposition 2.5, it suffices to show that T € L(IweR(By), -+ 10k (Ey) -
lweak(Nk F)). It is obvious that (7},)52; is a Cauchy sequence in C(lweak(El) LBk (B

l“’eak ). Since IW°**(NF;F) is complete, L(IL*(Ey),--- 1% (Ey)

? "Gk

(N F)
lwe“k(Nk7 F) ) is complete. Thus there exists some S € LW (By), -+ 10k (Ey) :
(N¥; F)

l”“"e“’c N*; F) ) such that T, — S. It is obvious that 7' = S. By Proposition 2.5,

lim w1, = T) = lim T, — T = Tim |7, — T = 0.

n—oo  (Pig1,s

Similarly, we see that £(p - qk)(El’ -+« ,Ey ¢ F) is a Banach space under the
norin 7T(p;q1,-~~ \qx)"
(b): By (a), it follows. O
Proposition 2.8. Ifv e L(F : G) and T € C”;le BIPR V2 PEEEIY F), then
vol' € LI (Ey,--+, By :G) and w?;,"qll ﬁff,qk)(voT) S N v I (] B
Proof. Let (x ) 2, € Blweak(E y for j=1,--- k.
Then we have, for mq,--- ,my € N,
|| ( UOT( Lipyooe 7xfk) )11, ,zk ||weak
M,y My
= sup [ Y| (ol (e ak)) PP

’
2 €Bgx iy, ip=1
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my,-- , Mg v
7
= swp [ Y [ zop (T, af)) P TP o]
2 €Bgx i1, ie=1 ||U||
My, Mk
!
= s [ Y Y@ P e
Y EBR* 41, ir=1
-
< e (1) o]l

O

Proposition 2.9. Ifv € L(F : G) and P € P;Z';l)fw(kE : F), then voP €

Pot(FE 2 G) and 724" (voP) < ||v]| - w(nt = (P).

Proof. Tt is similar as the proof of Proposition 2.8. O

We have a composition theorem, which shows the good behavior of this class in
relation with the p-summing linear operators.

Theorem 2.10. Let u; € Ly(E;:Y;) (j=1,--- k), T € L= (Yy,--- Y} : F)
and 1 <r <oowithl/r =1/p+1/q. Then S =T (uy,- - ,ux) is weak-type multiple
r-summing and TV (S) < w?“l’w(T) cmg(ur) - mg(ug).

Proof. We follows along the lines of ([6], Composition Theorem 2.22). Let (z)32, €
Bl:;;‘eak:(Ej) for j = 1,---,k. By ([6], Lemma 2.2), there exist (\/)72, € B;, and
(1)1 € Biyear(y,) such that u;(w]) = Ny! and [[(y])32, [y " < m(u;).

Then we have, for mq,--- ,my € N,

(S (i, af,) Vi (et

M, ,Mp

= swp [ D[Sl Y

’
2 €Bpx gy =1

my, -, ME
’
= lsup [ Z | z (T(A’}ly1:117. o 7)\7{€ky7{€k)) |T ]1/T
2 E€Bpx gy ip=1
M, M

’

= swp [ Y AL AR T (Tl ) T

’
2 €BF* 4y . ig=1

may, - Mg 4 ) my,- , Mg , T.B
S I DR PR L N sup | Yoo @h, ) T
i1, ip=1 2 €Brpr iy, ip=1
.. . . 1 1
( by Holder’s inequality because 1 = — + ——)
/v p/r
My, ,ME
< TODE g sup | R A A (R 78 ) N

2 €Bpx gy, ip=1
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< ) DR N
g ,”;nul—w(T) 'ﬂ-q(ul)”'ﬂ-q(uk)v
showing mm=w(8) < w;”“l’w(T) cmg(ur) - g (ug). O

By Proposition 2.8 and Theorem 2.10, we have an ideal property for multiple
weakly summing multilinear mappings.

Corollary 2.11. Let v € Lo(F : G),u; € Ly(E; 1 Y;) (j =1,---,k), T €
Lpt=w(yy, Yy« F) and 1 < r < oo with 1/r = 1/p + 1/q.  Then
voT (uy, -+ ,ux) is multiple weakly r-summing and

ﬂ:"“l_w(voT) < 7rZT)nul—w(T) g (ur) g (ug) - |vll.

We have also an ideal property for multiple weakly summing homogeneous poly-
nomials:

Theorem 2.12. Let v € L(F : G),u € Ly(E :Y), P € Pyrul=v (*Y : F) and
1<r<oowithl/r=1/p+1/q. Then S = voPou is multiple weakly r-summing
and w0 (S) < ol - At (P) - (g (w)*.

Proof. Tt follows from Proposition 2.9 and a similar proof of Theorem 2.10. g

3. Aron-Berner extensions of multiple weakly summing mappings

A bounded k-homogeneous polynomial P has an extension P € P(FE** : F**)
to the bidual E** of E, which is called the Aron-Berner extension of P (see [1]).
In fact, P is defined in the following way: We first start with the complex-valued
bounded k-homogeneous polynomial P € P(*E). Let A be the bounded symmetric
k-linear form on E corresponding to P. We can extend A to an k-linear form A on
the bidual E** in such a way that for each fixed j, 1 < j < k and for each fixed
Z1,...,2j—1 € E and zj41,...,2; € £, the linear form

A k3
z— Alx1,...,&j-1,2,Zj41,. .., %), 2 € E™,

is weak-star continuous. By this weak-star continuity A can be extended to an
k-linear form A on E**, beginning with the last variable and working backwards to
the first. Then the restriction

P(2) = A(z,...,2)

is called the Aron-Berner extension of P. In particular, Davie and Gamelin [4]
proved that |P|| = ||P|. Next, for a vector-valued k-homogeneous polynomial
P e P(*E : F), the Aron-Berner extension P € P(KE** : F**) is defined as follows:
Given z € E** and w € F*,

P(2)(w) = wo P(z).
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For x € E, we define ¢, : E* — C by 6,(z*) = 2*(x) for each z* € E*. Let < z,, >
is anet in E and z§* € E**. We say that < x, > converges polynomial-star to z§*
if for every P € P(*E)(k € N), we have P(x,) converges to P(z3*), where P is the
Aron-Berner extension of P. Recall that Davie and Gamelin [4] proved that Bg is
polynomial-star dense in B« .

The following shows that the Aron-Berner extensions of multiple weakly
(p;q1,- -, qx)-summing multilinear mappings and polynomials are also multiple
weakly (p;q1,- -+, qk)-summing.

Theorem 3.1. We have:
(o) TeLm™ = (Fy,--,BEx:F)ifandonlyif T € L7 (Ef*, - Ef*:

(Psq1,-,qx) (p3qrs,aqx)

F**), where T is any extension of T to Ei* x --- x Ef* by the Aron-Berner
Extension Method. In this case, 7™ v (T) =mrw=w (T).
(p3qrsax) (P31, .qk)

(b) Pe P{Z}f}l}_w(kE : F) if and only if P € szl)_w(kE** : F**), where P isihe

Aron-Berner extension of P to E**. In this case, 7"\~ (P) = ™= (P).
(p,9) (p,9)

Proof. For simplicity in the notation we write the proof for k = 2.
(a): («<): Since T is an extension of T, ﬂ?;;’;l;ff’qk)(T) < szz;l;_'_“_7qk)(7) < 0o. Thus
TeLri=v (B, ,Ey:F).

(P3q1,+ ,qk)
(=): Let mi,my € N. Let 2 € BF***a(xlllv"'vx;;n) € Biyear(mr7) and
(), ,y;;u) € Blzzuzeak(E;*). By Goldstine’s Theorem there exist nets (zl/)p in

Bp-+, nets (:Eialil)gil(l <43 < my) in Bg,, and nets (yzfiz)Aiz (1 <is < mg) in
(1 <idp <my)

converges weak-star to z, , and that (y?w) A, (1 < iz < mg) converges weak-star

Bg, such that (Zl/)r‘ converges weak-star to 2", and that (:1:&111 )a

i1

"
to y;,. Hence

lim ol ) =y (@) (¢ € BY, 1<y <my)

ey
iy €Q4y —o0 1

and
’ . " ’ ’
li 5) =y € E;5,1<iy < A
P wg,) =vi,y) (y 5,1 <iy <mgy) (A)
Claim : Hmsupg, e, oo HMSUP, cq, oo l(@a, o 2id 5" <1,
lin supg, cn, oo+ ISPy, ca oo (0 - sy )20k < 1.
Indeed, we have
limsup --- limsup ||(:rét1 T ) gf“k
a1 €Q1—00 Ay eQ?nl_‘OO
_ : O RN - 3 "mi V[q1\1/a
= swp (Mo ) b lim (e )I)

Z,GBET
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= sup (Joy (@) 4+ o, (@)Y (by (A))
IIGBET

_ NS ” @ 1/q1

= sup (|0, (@) 4+ 18, (2,7

6m’EBE’1"**

" 1"
< H(xh 7$m1)HZ]1wk <L

Similarly, we can show that

limsup --- limsup ||(yé1 ,ygj2)||fl"2€“k <1

B1EA;—00 Bmo EAmgy—00

Since T(x;;,y;;) € By, by the weak-star convergence of the net (z)r, we have

"e,— " 1"

(T(:Eilvyig)) (1<ip <mq,1<is <mg) (B)

. — " 1" ’
im TG, u)(21) = 2

It follows that

ml,mQ
U 1 T ) P
i1,12=1
miy,msa
= [0 dim [Ty, P17
il,i2:1
miy,ma
= i [ 37 [Ty P17 (by (B)
il,i2:1
mi,ma
= i 1 1 ! i1 P2 p 11/p
Jm (30 dm A (TG )P

Zl7i2:1

(by the definition of T and (A))

my,ma
, . ,
= li li cee li li C li Z T (x4 i2 p 11/p
lEfl‘Illoo aq €§1211n~>oo Qg e(llrjnll —o00 31 e}\rln—mx; By 6/1\1332 — 00 [1 . ‘ “l ( (xo"il ’ yﬁig )) ]
1,12=
< qremw  (T)( limsup -+~ limsup xL oo g )| weak
(p3qu,- ,qzc)( )(a1€§21—>oo iy €y 00 H( a0 Yo, )| q1 )
( limsup --- limsup H(yﬁlh 7yg;” ijeak)

B1EA1—00 Brmg EAmy—00

< mp (1) < oo (by (#)),

which shows T € L (Bf*,--- By @ F**) and 7/0e=" () =
7_‘,mul—w (*)
(P3q1, »qk) :

(b): («<): Since P is an extension of P, 7"~ (P) < 7"“=*(P) < oo. Thus

l . (p,9) = "(p,9)
P EP(p,q) (*E: F).



516 Sung Guen Kim

"

(=): Let m € N. Let 2 € Bpees, (2], ,1,,) € Bjueak(p++). By the Davie-
Gamelin Theorem | Bp- (/BE, resp.) is polynomial-star dense in Bp«sx (Bpg«s,
resp.) | there exist nets (z;)r in Bp«, nets (zq,)0, (1 < i < m) in Bg such that
(2,)r converges polynomial-star to 2z, and that (za,)q, (1 < i < m) converges
polynomial-star to IE;/. Hence

dim Q(ra,) =Qa) (QEP("E),neN,1<i<m) (C)

LI : 3 weak
Claim: lmsup,, cq, oo - IMsup, co oo (o, - :zzam)H <1
Indeed, we have

limsup --- limsup [[(Zay, " ,%a,,) |;“e“k
a1 EQL—o0 QU €€y — 00
— li ' a4 ... li ' ay1/q
el ( dm o (@a)[ 0ot -l o (@a,)])
= sup (Joy(2)|7+ -+ |z, ()| (by (C))
z' €Bgx
_ . 1" q " q 1/q
§ 1€B s
< Iy, @)k < 1.

Since P(x; ) € Bp+-, by the weak-star convergence of the net (z)r, we have

lim P(z;)(x) =2 (P(x;)) (1<i<m) (D)

lel'—o0

It follows that

Z| 2 (Pa) |7 1V

— ; Pl pl/p — p1l/p

[;lelggm| PGl e = i 57 PG P17 by (D)
m

_ . . ’ 1/ el -

= zelrlr—r}oo [ZZ_: aiehQni>oo| 2 (P(xa,)P 177 (by the definition of P and (C))

— ; 1/p
(e

< wgzl)_w( ) ( hmsup colimsup  ||(Zay, - Tay, )|[264F)E

a1 €EQ1—00 Qi €EQpy — 00
< AN(P) < oo (by (x4),
which shows P € P{nu~"(FE** : F**) and m(n =" (P) = w(n~" (P). O
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