Design of Discriminant Function for White and Yellow Coating with Multi-dimensional Color Vectors

다차원 컬러벡터 기반 백태 및 황태 분류 판별함수 설계

  • Published : 2007.08.30

Abstract

In Oriental medicine, the status of tongue is the important indicator to diagnose one's health, because it represents physiological and clinicopathological changes of inner parts of the body. The method of tongue diagnosis is not only convenient but also non-invasive, therefore, tongue diagnosis is one of the most widely used in Oriental medicine. But tongue diagnosis is affected by examination circumstances a lot. It depends on a light source, degrees of an angle, doctor's condition and so on. So it is not easy to make an objective and standardized tongue diagnosis. As part of way to solve this problem, in this study, we tried to design a discriminant function for white and yellow coating with multi-dimensional color vectors. There were 62 subjects involved in this study, among them 48 subjects diagnosed as white-coated tongue and 14 subjects diagnosed as yellow-coated tongue by oriental doctors. And their tongue images were acquired by a well-made Digital Tongue Diagnosis System. From those acquired tongue images, each coating section were extracted by oriental doctors, and then mean values of multi -dimensional color vectors in each coating section were calculated. By statistical analysis, two significant vectors, R in RGB space and H in HSV space, were found that they were able to describe the difference between white coating section and yellow coating section very well. Using these two values, we designed the discriminant function for coating classification and examined how good it works. As a result, the overall accuracy of coating classification was 98.4%. We can expect that the discriminant function for other coatings can be obtained in a similar way. Furthermore, if an automated segmentation algorithm of tongue coating is combined with these discriminant functions, an automated tongue coating diagnosis can be accomplished.

Keywords