DOI QR코드

DOI QR Code

Monitoring on Extraction Conditions for Physicochemical Qualities of Ethanol Extract from Garlic

마늘 에탄올 추출물의 이화학적 특성에 대한 추출조건의 모니터링

  • Cha, Tae-Yang (R&D Center, Kim Jeong Moon Aloe Co. LTD.) ;
  • Kim, Seong-Ho (Dept. of Bio-food Science, Kyungbuk College of Science) ;
  • Kwon, Taeg-Kyu (School of Medicine, Keimyung University) ;
  • Kwon, Joong-Ho (Dept. of Food Science and Biotechnology, Kyungpook National University) ;
  • Lee, Sang-Han (Dept. of Food Science and Biotechnology, Kyungpook National University) ;
  • Lee, Jin-Man (Dept. of Food and Biotechnology, Hoseo University, Center for Food Function and Safety, Hoseo University)
  • 차태양 ((주)김정문알로에 생명과학연구소) ;
  • 김성호 (경북과학대학 바이오식품과) ;
  • 권택규 (계명대학교 의과대학 면역학교실) ;
  • 권중호 (경북대학교 식품공학과) ;
  • 이상한 (경북대학교 식품공학과) ;
  • 이진만 (호서대학교 식품생물공학과, 호서대학교 식품기능안전센터)
  • Published : 2007.09.30

Abstract

This study was carried out to find the optimal conditions for the extraction of the effective ingredients based on central composite by monitoring the extraction characteristics of each ingredient with a response surface methodology. The optimal condition for the effective component alliin was extract temperature of $60.86^{\circ}C$, extract time of 3.77 hr, and ethanol concentration of 50.68%, and that for allicin was $65.11^{\circ}C$, 2.79 hr, and 13.62%, respectively, with the maximum extraction of 16.72 mg%. The maximum value of extracted total phenolics was 16.72 mg%, the optimal condition for electron donating ability was $93.35^{\circ}C$, 3.22 hr and 10.38%. The optimal conditions for pH 1.2 and 3.0 nitrite-scavenging ability was extract temperature of $79.77^{\circ}C$ and $76.46^{\circ}C$, extract time of 3.22 hr and 3.31 hr, and the ethanol concentration of 10.38% and 1.12%, respectively. With this optimal condition, the obtained maximum values for nitrite-scavenging activities at pH 1.2 and 3.0 were 94.85% and 63.22%, respectively.

마늘은 향신료로서 역할뿐만 아니라 생체기능을 조절하는 유용한 성분을 함유하고 있어서 건강 유지에 유익한 식품으로 알려져 있다. 따라서 본 연구에서는 마늘을 가공식품 소재로 활용하기 위하여 중심합성계획에 의한 반응표면분석법을 이용하여 마늘의 유효성분 함량을 다량 추출할 수 있는 최적추출조건을 모니터링하였다. Alliin 함량은 추출온도 $60.86^{\circ}C$, 추출시간 3.77 hr, 에탄올 농도 50.68%에서 최적이었고, allicin은 추출온도 $65.11^{\circ}C$, 추출시간 2.79 hr, 에탄올 농도 13.62%에서 최대값 8.23 mg%로 예측되었다. 총 페놀성 화합물 함량은 최대값 16.72 mg%로 예측되었으며 이 때 추출조건은 추출온도 $93.35^{\circ}C$, 추출시간 3.22 hr 및 에탄올 농도 10.38%로 나타났고, 전자공여능은 추출온도 $82.64^{\circ}C$, 추출시간 2.88 hr 및 에탄올 농도 0.43%에서 최적이었다. pH 1.2 및 3.0 아질산염 소거능은 추출온도 $79.77^{\circ}C$, $76.46^{\circ}C$, 추출시간 3.22 hr, 3.31 hr 및 에탄올농도 10.38%, 1.12%일 때 최대값은 94.85%, 63.22%이었다.

Keywords

References

  1. Kawabata T, Shazuki H, Ishibishi T. 1974. Effect of ascorbic acid on the formation of N-nitrosodimethyl amine in vitro. Bull Japan Soc Sci 40: 1251-1256
  2. Nishimura H, Hanny W, Mizutani J. 1988. Volatile flavor components and antithrombotic agent: vinyldithinins from Allium victorialis L. J Agric Food Chem 36: 563-566 https://doi.org/10.1021/jf00081a039
  3. Kim ES, Chun HJ. 1993. The anticarcinogenic effect of garlic juice against DMBA induced carcinoma on the hamster buccal pouch. J Korean Soc Food Nutr 22: 398-404
  4. Ruffin J, Hunter SA. 1983. An evaluation of the side effect of garlic as an antihypertensive agent. Cytobios 37: 85-90
  5. Kamanna VS, Chandrasekhara N. 1983. Biochemical and physiological effects of garlic (Allium sativum Linn). J Sci Industrial Res 42: 353-359
  6. Cavallito CJ, Bailey JH. 1944. Alliin, the antibacterial principle of Allium sativum. I. Isolation, physical properties, and antibacterial action. J Am Chem Soc 66: 1950-1956 https://doi.org/10.1021/ja01239a048
  7. Dewit JC, Notermans S, Gorin N, Kampelmacher EH. 1979. Effect of garlic oil or toxin production by Clostridium botulium in meet slurry. J Food Protect 42: 222-227 https://doi.org/10.4315/0362-028X-42.3.222
  8. Small LD, Bailey JH, Cavallito CJ. 1947. Allkyl thiosulfinates. J Am Chem Soc 69: 1710-1716 https://doi.org/10.1021/ja01199a040
  9. Small LD, Bailey JH, Cavallito CJ. 1949. Comparison of some properties of thiosulfonates and thiosulfinates. J Am Chem Soc 71: 3565-3571 https://doi.org/10.1021/ja01178a531
  10. Yu TH, Wu CM, Liou YC. 1949. Volatile compounds from garlic. J Agric Food Chem 37: 725-730 https://doi.org/10.1021/jf00087a032
  11. Kim HK, Jo KS, Kang TS, Sin HS. 1987. Browning and sorption characteristics of dried garlic flakes with relative humidity and storage temperature. Korean J Food Sci Technol 19: 176-180
  12. Kim BS, Park NH, Park MH, Han BH, Bae TJ. 1990. Manufacture of garlic juice and prediction of its boiling point rise. Korean J Food Sci Technol 22: 486-491
  13. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists, Washington DC, USA
  14. Myers RH. 1971. Response surface methodology. Allyn and Bacon Inc., Boston. p 127-139
  15. Wamasimdara PKJPD, Shahidi F. 1996. Optimization of hexameta-phosphate-assisted extraction of flaxseed proteins using response surface methodology. J Food Sci 61: 604-607 https://doi.org/10.1111/j.1365-2621.1996.tb13168.x
  16. Martha LA, James PB. 1992. The mathematica handbook, compatible with mathematica version 2.0. An inprint of academic press. Inc. Harcourt Brace & Co., Massachusetts. p 15-511
  17. Lee EH, Chang KS, Kwon YA, Lee EM. 1997. Optimization of the alliins extraction in the garlic by supercritical carbon dioxied. Food Engineering Progress 1: 149-153
  18. Sohn KH, Lim JK, Kong UY, Park JY, Akinori N. 1996. High pressure inactivation of allinase and its effects on flavor of garlic. Korean J Food Sci Technol 28: 593-599
  19. Han J, Lawson L, Han G, Han PA. 1995. A spectrophotometric method for quantitative determination of allicin and total garlic thiosulfinates. Anal Biochem 225: 157-160 https://doi.org/10.1006/abio.1995.1124
  20. Amerine MA, Ough CS. 1980. Methods for analyses of musts and wine. Wiley & Sons, New York. p 176-180
  21. Blios MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 https://doi.org/10.1038/1811199a0
  22. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Biol Chem 51: 1333-1338 https://doi.org/10.1271/bbb1961.51.1333
  23. Jeong JH. 1998. Quality changes of fresh garlic paste during storage. Korean J Food & Nutr 11: 278-282

Cited by

  1. Analysis of Active Components of Giant Black Garlic vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1672
  2. Biological Activities of Yellow Garlic Extract vol.44, pp.7, 2015, https://doi.org/10.3746/jkfn.2015.44.7.983
  3. Sensitivity Test on the Food Poisoning Bacteria of the Garlic Extract vol.9, pp.2, 2009, https://doi.org/10.5392/JKCA.2009.9.2.339
  4. Effects of Baked Garlic Powder on Lipid Metabolism in Rats Fed a High-Fat/High-Cholesterol Diet vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.049
  5. 잎마늘 생산을 위한 마늘 주아의 무게 및 형태가 발아와 생장에 미치는 영향 vol.26, pp.3, 2017, https://doi.org/10.12791/ksbec.2017.26.3.221