DOI QR코드

DOI QR Code

Effects of Camellia sinensis Extracts on the Antioxidant System and Alcohol Down-Regulation Enzymes in Sub-Acute Ethanol Treated ICR Mice

차나무(Camellia sinensis) 추출물이 아급성 알코올 투여 마우스의 항산화 및 알코올 분해 효소 활성에 미치는 영향

  • Published : 2007.09.30

Abstract

This study was conducted to investigate the effects of four kinds of tea (Camellia sinensis) extracts on the antioxidant defense systems as well as the activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in ethanol administered ICR mice. According to the results, treatment with puerh tea significantly increased the superoxide dismutase activity and glutathion reductase activity in liver. In addition, the group treated with oolong tea exhibited higher superoxide dismutase activity and glutathion reductase activity in serum than those of puerh tea, green tea and black tea treated groups. The oolong tea and puerh tea also reduced malondealdehyde contents in both liver and serum. These results suggested that puerh tea and oolong tea were the most effective against alcohol-induced oxidative damage among the Camellia sinensis teas. On the other hand, in the measurement of alcohol break-down enzyme activities, the group treated with green tea exhibited the highest hepatic ADH and ALDH activities, suggesting that the group treated with green tea might be useful for alcohol down-regulation.

Mouse에 알코올을 투여한 결과 항산화 효소의 활성이 감소하는 것을 볼 수 있으며 ADH 및 ALDH활성도 모두 감소하였다. 녹차, 홍차, 우롱차 및 보이차의 알코올 섭취 mouse에서의 항산화 및 알코올 분해효소에 미치는 영향을 측정하여 비교한 결과 네 가지 차 모두에서 투여하지 않은 군에 비하여 항산화 및 알코올 분해 촉진효과를 나타내었으며 그 중 보이차가 간에서의 SOD 및 GR활성을 크게 증가시켰고 MDA함량을 감소시켰다. 또한 우롱차는 혈액에서의 SOD 및 GSH-PX활성을 크게 증가시켰고 MDA함량을 감소시켰으며 녹차와 홍차의 항산화 효과는 이들에 비하여 비교적 낮았다. 또한 알코올 분해에 관여하는 효소인 ADH, ALDH 활성은 녹차를 투여한 군에서 매우 높게 나타났으며 녹차 다음으로는 우롱차가 ADH 활성측정에서, 보이차가 ALDH 활성측정에서 높은 수치를 보였고 홍차 투여 군에서 가장 낮았다. 따라서 네 가지 차 중 우롱차와 보이차를 섭취하였을 때 높은 항산화 효과를 기대할 수 있으며 알코올 분해에는 녹차의 섭취가 가장 효율적일 것으로 사료된다.

Keywords

References

  1. Plinski W, Witztum JL. 2000. Immune response to oxidative neoepitopes on LDL and phospholipids modulate the development of atherosclerosis. J Intern Med 247: 171-180 https://doi.org/10.1046/j.1365-2796.2000.00656.x
  2. Willcox JK, Ash SL, Catiqnani GL. 2004. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr 44: 275-295 https://doi.org/10.1080/10408690490468489
  3. Lieber CS. 1994. Alcohol and liver:update. Gastroenterology 106: 1085-1090 https://doi.org/10.1016/0016-5085(94)90772-2
  4. Lieber CS. 2004. Milestones in liver disease. J Hepatol 40: 198-202 https://doi.org/10.1016/j.jhep.2003.12.005
  5. Lin JK, Juan IM, Chen YL. 1995. Biochemical studies on the anti carcinogenesis of tea polyphenols. Food Science and Industry 28: 29-32
  6. Lin JK, Liang YC, Shoei Y, Lin S. 1999. Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem Phamacol 58: 911-915 https://doi.org/10.1016/S0006-2952(99)00112-4
  7. Choi SI, Lee JH, Lee SR. 1994. Effect of green tea beverage for the removal of cadmium and lead by animal experiments. Korean J Food Sci Thechnol 26: 745-749
  8. Vinson JA, Teufel K, Wu N. 2004. Green and black teas inhibit atherosclerosis by lipid, antioxidant and fibrinolytic mechanisms. J Agric Food Chem 52: 3661-3665 https://doi.org/10.1021/jf035255l
  9. Neuhaus VS, Lill G, Vetter H, Schror K, Weber AA. 2004. Platelet aggregation induced by the C-terminal peptide of thrombospondin-1 (4N1-1) is inhibited by epigallocatechin gallate but not by prostaglandin E1. Platelets 15: 455-457 https://doi.org/10.1080/09537100410001710245
  10. Sugatani J, Fukazawa N, Ujihara K, Yoshinari K, Abe I, Hiroshi H, Miwa M. 2004. tea polyphenols inhibit acetyl-CoA:1-alkyl-sn-glycero-3-phosphocholine acetyltransferase (a key enzyme in platelet-activating factor biosynthesis) and platelet-activating factor induced platelet aggregation. Int Arch Allergy Immunol 134: 17-28 https://doi.org/10.1159/000077529
  11. Afaq F, Mukhtar H. 2002. Photochemoprevention by botanical antioxidants Skin Pharmacol Appl Skin Physiol 15: 297-306 https://doi.org/10.1159/000064533
  12. Geetha T, Garg A, Chopra K, Pal Kaur I. 2004. Delineation of antimutagenic activity of catechin, epicatechin and green tea extract. Mutat Res 556: 65-74 https://doi.org/10.1016/j.mrfmmm.2004.07.003
  13. Huh SW, Bae SM, Kim YW, Lee JM, Namkoong SE, Lee IP, Kim SH, Kim CK, Ahn WS. 2004. Anticancer effects of (-)-epigallocatechin-3-gallate on ovarian carcinoma cell lines. Gynecol Oncol 94: 760-768 https://doi.org/10.1016/j.ygyno.2004.05.031
  14. Friedman M. 2007. Overview of antibacterial, antitoxin, antiviral and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res 51: 116-134 https://doi.org/10.1002/mnfr.200600173
  15. Kim S, Ruengwilysup C, Fung DY. 2004. Antibacterial effect of water-soluble tea extracts on foodborne pathogens in laboratory medium and in a food model. J Food Prot 67: 2608-2612 https://doi.org/10.4315/0362-028X-67.11.2608
  16. Yang YC, Lu FH, Wu JS, Wu CH, Chang CJ. 2004. The protective effect of habitual tea consumption on hypertension. Arch Intern Med 164: 1534-1540 https://doi.org/10.1001/archinte.164.14.1534
  17. An J, Lee JT, Bea MJ. 1998. Isolation of a novel polyphenol from oolong tea and its effective prevention of the gout bong. Korean J Food Sci Technol 30: 970-975
  18. Lau KM, He ZD, Dong H, Fung KP, But PP. 2002. Anti-oxidative, anti-inflammatory and hepato-protective effects of Ligustrum robustum. J Ethnopharmacol 83: 63-71 https://doi.org/10.1016/S0378-8741(02)00192-7
  19. Opala T, Rzymski P, Pischel I, Wilczak M, Wozniak J. 2006. Efficiency of 12 weeks supplementation of a botanical extract-based weight loss formula on body weight, body composition and blood chemistry in healthy, overweight subjects a randomised double-blind placebo-controlled clinical trial. Eur J Med Res 30: 343-350
  20. 정동효, 김종태. 1997. 차의 과학. 대광서림, 서울. p 25-261
  21. Lin JK, Lin-Shiau SY. 2006. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol Nutr Food Res 50: 211-217 https://doi.org/10.1002/mnfr.200500138
  22. Song I. 2001. The effect of Camellia sinesis LINNE on blood alcohol concentration in normal healthy student. MS Thesis. Kyung Hee University
  23. Lowry OH, Fosebrough NJ, Farr AL, Fandall RL. 1957. Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-276
  24. Misra HP, Fridovich I. 1972. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247: 3170-3175
  25. Aebi H. 1984. Catalase in vitro. Methods Enzymol 105: 121-126 https://doi.org/10.1016/S0076-6879(84)05016-3
  26. Flohe L, Gunzler WA. 1984. Assays of glutathione peroxidase. Methods Enzymol 105: 114-121 https://doi.org/10.1016/S0076-6879(84)05015-1
  27. Fariss MW, Reed DJ. 1987. High-performance liquid chromatography of thiol and disulfides: dinitrophenol derivatives. Methods Enzymol 143: 101-109 https://doi.org/10.1016/0076-6879(87)43018-8
  28. Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358 https://doi.org/10.1016/0003-2697(79)90738-3
  29. Lebsaek ME, Peterson DR, Collus AC. 1976. preferential inhibition of the low Km aldehyde dehydrogenase activity by pargyline. Biochem Pharmacol 26: 1151-1154 https://doi.org/10.1016/0006-2952(77)90060-0
  30. Shin KH, Han YN, Chung HS, Lim SS, Lee SH, Shin CS. 1998. Effects of high molecular weight fractions of aloe spp. on alcohol metabolism. Kor J Pharmacogn 29: 120-124
  31. SAS Institute. 1995. SAS/STAT User's Guide. SAS Institute Inc., Cray, NC, USA
  32. Huang TT, Yasunami M, Carlson EJ, Gillespie AM, Reaume AG, Hoffman EK, Chan PH. 1997. Superoxide- mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblast. Arch Biochem Biophys 344: 424-432 https://doi.org/10.1006/abbi.1997.0237
  33. Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF, Chan PH. 1991. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc Natl Acad Sci USA 88: 11158-11162 https://doi.org/10.1073/pnas.88.24.11158
  34. Wiedau-Pazos M, Goto JJ, Rabizadeh S, Grilla EB, Roe JA, Lee MK, Valentine JS. 1996. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271: 515-518 https://doi.org/10.1126/science.271.5248.515
  35. Husain K, Somani SA. 1997. Response of cardiac antioxidant system to alcohol and exercise training in the rat. Alcohol 14: 301-307 https://doi.org/10.1016/S0741-8329(96)00211-X
  36. Boby RG, Indira M. 2003. The impact of cyanoglycoside rich fraction isolated from Cassava (Manihot esculenta) on alcohol induced oxidative stress. Toxicol 42: 367-372 https://doi.org/10.1016/S0041-0101(03)00165-X
  37. Dianzani MU. 1985. Lipid peroxidation in ethanol poisoning: acritical reconsideration. Alcohol 20: 161-173 https://doi.org/10.1016/S0741-8329(99)00068-3
  38. Yonemitsu K, Koreeda A, Higuchi A, Tsunenari S. 1999. Protective effects of green tea and epigallocatechin gallate against paraquat toxicity in mice. Jpn J Toxicol 12: 143- 150
  39. Luczaj W, Skrzydlewska E. 2004. Antioxidant properties of black tea in alcohol intoxication. Food Chem Toxicol 42: 2045-2051 https://doi.org/10.1016/j.fct.2004.08.009
  40. Vidal F, Cristina R, Montserrat G, Fina B, Fernandez M, Lorenzo A, Richart C. 1998. Influence of chronic alcohol abuse and liver disease on hepatic aldehyde dehydroge- nase activity. Alcohol 15: 3-8 https://doi.org/10.1016/S0741-8329(97)00073-6

Cited by

  1. Effects of Gastrodiae rhizoma on the Liver Function and Alcohol Metabolism in Alcohol Treated Rats vol.32, pp.6, 2016, https://doi.org/10.9724/kfcs.2016.32.6.818
  2. 하수오 침출술이 흰쥐의 기억력 손상에 미치는 영향 vol.22, pp.4, 2007, https://doi.org/10.20878/cshr.2016.22.4.009
  3. 섬유화된 간조직에서 알파토코페롤에 따른 조직학적 변화 연구 vol.8, pp.4, 2007, https://doi.org/10.15207/jkcs.2017.8.4.123