DOI QR코드

DOI QR Code

(-) Epigallocatechin gallate restores ethanol-induced alterations in hepatic detoxification system and prevents apoptosis

  • Published : 2007.09.30

Abstract

The present study was designed to estimate the protective effect of (-) epigallocatechin gallate (EGCG) on ethanol-induced liver injury in rats. Chronic ethanol administration (6 g/kg/day ${\times}$ 60 days) caused liver damage that was manifested by the elevation of markers of liver dysfunction - aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, bilirubin and ${\gamma}$-glutamyl transferase in plasma and reduction in liver glycogen. The activities of alcohol metabolizing enzymes such as alcohol dehydrogenase and aldehyde dehydrogenase were found to be altered in alcohol-treated group. Ethanol administration resulted in the induction of cytochrome p450 and cytochrome-$b_{5}$ activities and reduction of cytochrome-c reductase and glutathione-S-transferase, a phase II drug metabolizing enzyme. Further, ethanol reduced the viability of isolated hepatocytes (ex vivo) as assessed by trypan blue exclusion test and induced hepatocyte apoptosis as assessed by propidium iodide staining. Treatment of alcoholic rats with EGCG restored the levels of markers of liver injury and mitigated the alterations in alcohol metabolizing and drug metabolizing enzymes and cyt-c-reductase. Increased hepatocyte viability and reduced apoptotic nuclei were observed in alcohol + EGCG-treated rats. These findings suggest that EGCG acts as a hepatoprotective agent against alcoholic liver injury.

Keywords

References

  1. Agarwal DP, Godeed HW. (1990) Alcohol Metabolism, Alcohol intolerance and Alcoholism. Biochemical and Pharmacogenetic Approaches. Berlin: Spinger-Verlag, pp.126-144
  2. Arteel GE, Uesugi T, Bevan LN, Gabele E, Wheeler MD, Mckim SE, Thurman RG. (2002) Green tea extract protects against early alcohol-induced liver injury in rats. Biol. Chem. 383, 663-670 https://doi.org/10.1515/BC.2002.068
  3. Berry MN, Friend DS. (1969) High-yield preparation of isolated rat liver parenchymal cells: A biochemical and fine structural study. J. Cell Biol. 43, 506 https://doi.org/10.1083/jcb.43.3.506
  4. Cameron RG, Neuman MG, Shear NH, Katzb G, Bellentanic S, Tiribellic C. (1998) Modulation of liver-specific cellular response to ethanol in vitro in Hep G2 cells. Toxicol In Vitro 12, 111-119 https://doi.org/10.1016/S0887-2333(97)00095-7
  5. Cederbaum AI. (2001) Alcohol, oxidative stress and cell injury-a serial review. Free Radic. Biol. Med. 31, 1524-1526 https://doi.org/10.1016/S0891-5849(01)00741-9
  6. Cederbaum AI, Wu D, Mari M, Bai J. (2001) CYP2E1-dependent toxicity and oxidative stress in HepG2 cells. Free Radic. Biol. Med. 31, 1539-1543 https://doi.org/10.1016/S0891-5849(01)00743-2
  7. Coodley EL. (1969) Enzyme diagnosis in hepatobiliary disease. Am. J. Gastroenterol. 52, 189-202
  8. Guo Q, Zhao BL, Li MF, Shen SR, Xin WJ. (1996) Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim. Biophys. Acta 1304, 210-222
  9. Habig WH, Pabst MJ, Jakoby WB. (1974) Glutathione-S-transferase: A first enzymatic step in mercapturic acid and formation. J. Biol. Chem. 249, 7130-7139
  10. Hahn G, Lehmann HD, Kurten M, Uebel H, Vogel G. (1968) On the pharmacology and toxicology of silymarin, an antihepatotoxic active principle from silybum marianum. Drug Res 18, 698-704
  11. Hasumura Y, Teschke R, Lieber CS. (1975) Acetaldehyde oxidation by hepatic mitochondria: its decrease after chronic ethanol consumption. Science 189, 727-729 https://doi.org/10.1126/science.168641
  12. Hendrickson HP, Sahafayen M, Bell MA, Kaufman AD, Hadwiger ME, Lunte CE. (1994) Relationship of flavonoid oxidation potential and effect on rat hepatic microsomal metabolism of benzene and phenol. J. Pharm. Biome. Anal. 12, 335-341 https://doi.org/10.1016/0731-7085(94)90008-6
  13. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen elderly study. Lancet 342, 1007-1011 https://doi.org/10.1016/0140-6736(93)92876-U
  14. Higuchi H, Adachi M, Miura S, Gores GJ, Ishii H. (2001) The mitochondrial permeability transition contributes to acute ethanol-induced apoptosis in rat hepatocytes. Hepatol. 34, 320-328 https://doi.org/10.1053/jhep.2001.26380
  15. Hofmann CS, Sonenshein GE. (2003) Green tea polyphenol epiga1locatechin-3-ga11ate induces apoptosis of proliferating vascular smooth muscle cells via activation of p53. FASEB J. 17, 702-704
  16. Ingelman-Sundberg M, Johansson I, Yin H, Terelius Y, Eliasson E, Clot P, Albano E. (1993) Ethanol-inducible cytochrome P450 2El: genetic polymorphism, regulation and possible role in the etiology of alcohol- induced liver disease. Alcohol 10, 447-452 https://doi.org/10.1016/0741-8329(93)90063-T
  17. Jimenez-Lopez JM, Cederbaum AI. (2004) Green tea polyphenol epiga11ocatechin-3- gallate protects HepG2 cells against CYP2El-dependent toxicity. Free Radic. Biol. Med. 36, 359-370 https://doi.org/10.1016/j.freeradbiomed.2003.11.016
  18. Kind PRN, King EJ. (1954) Estimation of plasma phosphatases by determination of hydrolysed phenol with aminoantipyrine. J. Clin. Pathol. 7, 322-326 https://doi.org/10.1136/jcp.7.4.322
  19. King J. (1965) The dehydrogenases or oxidoreductaselactate dehydrogenase. In: Practical Clinical Enzymology. Ed. Van D, Nostrand, London, 83-93
  20. Kurose I, Higuchi H, Kato S, Miura S, Ishii H. (1996) Ethanol-induced oxidative stress in the liver. Alcohol. Clin. Exp. Res. 20, 77A-85A https://doi.org/10.1111/j.1530-0277.1996.tb01736.x
  21. Leung LK, Su Y, Chen R, Zhang Z, Huang Y, Chen ZY. (2001) Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr. 131, 2248-2251
  22. Levites Y, Youdim MB, Maor G, Mandel S. (2002) Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem. Pharmacol. 63, 21-29 https://doi.org/10.1016/S0006-2952(01)00813-9
  23. Lieber CS. (2005) Metabolism of alcohol. Clin. Liver Dis. 9, 1-35 https://doi.org/10.1016/j.cld.2004.10.005
  24. Lotito SB, Fraga CG. (2000) Catechins delay lipid peroxidation and a-tocopherol and b-carotene depletion following ascorbate depletion in human plasma. Proc. Soc. Exp. Biol. Med. 225, 32-38 https://doi.org/10.1046/j.1525-1373.2000.22504.x
  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-276
  26. Malloy AF, Evelyn KA. (1937) The determination of bilirubin with the photometric colorimeter. J. Biol. Chem. 119, 481-490
  27. Matsuzaki S, Leiber CS. (1977) Increased susceptibility of hepatic mitochondria to the toxicity of acetaldehyde after chronic ethanol consumption. Biochem. Biophys. Res. Commun. 75, 1059-1065 https://doi.org/10.1016/0006-291X(77)91489-9
  28. McKay DL, Blumberg JB. (2002) The role of tea in human health: an update. J. Am. Coll. Nutr. 21, 1-13
  29. Moldeus P, Hogberg J, Orrhenius S. (1978) Isolation and use of liver cells. Meth. Enzymol. 52, 60-71 https://doi.org/10.1016/S0076-6879(78)52006-5
  30. Montgomery R. (1957) Determination of glycogen. Arch. Biochem. Biophysics 67, 378-386 https://doi.org/10.1016/0003-9861(57)90292-8
  31. Morel I, Lescoat G, Cogrel P, Sergent O, Pasdeloup N, Brissot P, Cillard P, Cillard J. (1993) Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem. Pharmacol. 45, 13-19 https://doi.org/10.1016/0006-2952(93)90371-3
  32. Muto S, Fujita K, Yamazaki Y, Kamataki T. (2001) Inhibition by green tea catechins of metabolic activation of procarcinogens by human cytochrome P450. Mutat. Res. 479, 197-206 https://doi.org/10.1016/S0027-5107(01)00204-4
  33. Neuman MG, Shear NH, Bellentani S, Tiribel1i C. (1998) Role of cytokines in ethanol-induced hepatocytotoxicity in Hep G2 cells. Gastroenterology 114, 157-169 https://doi.org/10.1016/S0016-5085(98)70377-4
  34. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. J. Biol. Chem. 239, 2370-2378
  35. Oralawsky M, Meister A. (1963) ${\gamma}$-Glutamyl-p-nitroanilide: A new convenient substrate for determination and study of L- and -${\gamma}$-glutamyltranspeptidase activities. Biochim. Biophys. Acta 73, 679-681 https://doi.org/10.1016/0006-3002(63)90348-2
  36. Ostrowska J, Luczaj W, Kasacka I, Rozanski A, Skrzydlewska E. (2004) Green tea protects against ethanol-induced lipid peroxidation in rat organs. Alcohol 32, 25-32 https://doi.org/10.1016/j.alcohol.2003.11.001
  37. Perrissoud D, Testa B. (1986) Inhibiting or potentiating effects of flavonoids on carbon tetrachloride-induced toxicity in isolated rat hepatocytes. Drug Res. 36, 1249-1253
  38. Perrissoud D, Weibel I. (1980) Protective effect of (+) cyanidanol-3 in acute liver injury induced by galactosamine or carbon tetrachloride in the rat. Naunyn Schmiedebergs Arch. Pharmacol. 312, 285-291 https://doi.org/10.1007/BF00499159
  39. Puntarulo S, Cederbaum AI. (1989) Chemiluminescence from acetaldehyde oxidation by xanthine oxidase involves generation of and interactions with hydroxyl radicals. Alcohol. Clin. Exp. Res. 13, 84-90 https://doi.org/10.1111/j.1530-0277.1989.tb00288.x
  40. Reitman S, Frankel S. (1957) A colorimetric method for the determination of serum glutamic oxaloactic and glutamic pyruvic transaminase. Am. J. Clin. Pathol. 28, 56-63
  41. Sarafini M, Ghiaelli A, Ferro-Luzzi A. (1996) In-vivo antioxidant effect of green and black tea in man. Eur. J. Clin. Nutr. 50, 28-32
  42. Seglen PO. (1976) Preparation of isolated rat liver cells. Meth. Cell Biol. 13, 29-83
  43. Sinclair JF, Sinclair PR, Smith EL, Bement WJ, Pomeroy J, Bonkowsky H. (1981) Ethanol-mediated increase in cytochrome P-450 in cultured hepatocytes. Biochem. Pharmacol. 30, 2805-2809 https://doi.org/10.1016/0006-2952(81)90418-4
  44. Sueoka N, Suganuma M, Sueoka E, Okabe S, Matsuyama S, Imai K, Nakachi K, Fujiki H. (2001) A new function of green tea: prevention of lifestyle-related diseases. Ann. N. Y. Acad. Sci., 928, 274-280
  45. Umeki S, Shiojivi H, Nozawa Y.(1984) Chronic ethanol administration decreases fatty acyl CoA desat- urase activities in rat liver microsomes. FEBS Lett. 169, 279-286 https://doi.org/10.1016/0014-5793(84)80332-4
  46. Varga M, Buris L. (1989) Some morphometric evidence of hepatoprotective effects of (+)-cyanidanol-3. Pharmacol. Biochem. Behav. 33, 523-526 https://doi.org/10.1016/0091-3057(89)90380-8
  47. Varga M, Buris L. (1990) Quantitative ultrastructural analysis of hepatoprotective effects of (+)-cyanidol-3 on alcoholic liver damage. Exp. Mol. Pathol. 52, 249-257 https://doi.org/10.1016/0014-4800(90)90010-B
  48. Varilek GW, Yang F, Lee EY, et al. (2001) Green tea polyphenol extract attenuates inflammation in interleukin-2 deficient mice, a model of autoimmunity. J. Nutr. 131, 2034-2039
  49. Weisburger JH. (2002) Lifesytle, health and disease prevention: the underlying mechanisms. Eur. J. Cancer Prev. 11, S1-S7
  50. Wu TW, Zeng LH, Wu J, Fung KP. (1993). Morin hydrate is a plant-derived and antioxidant based hepatoprotector. Life Sci. 53, PL213-PL218 https://doi.org/10.1016/0024-3205(93)90266-6
  51. Yang F, Oz HS, Barve S, de Villiers WJS, McClain CJ, VariIek GW. (2001) The green tea polyphenol (~)-epigallocatechin-3-gallate blocks nuclear factor kappa B activation by inhibiting IB kinase activity in the intestinal epithelial cell line IEC-6. Mol. Pharmacol. 60, 528-533

Cited by

  1. Epigallocatechin Gallate, a Green Tea Phytochemical, Attenuates Alcohol-Induced Hepatic Protein and Lipid Damage vol.18, pp.8, 2008, https://doi.org/10.1080/15376510701884985