DOI QR코드

DOI QR Code

Research of Antioxidant Activity from Plant Resources using Proton Beam(I)

양성자 빔을 이용한 식물자원의 항산화 활성에 관한 연구(I)

  • 문병식 (동국대학교 자연과학대학 화학과) ;
  • 손귀엽 (동국대학교 자연과학대학 화학과) ;
  • 최진국 (동국대학교 자연과학대학 화학과) ;
  • 서동원 (동국대학교 자연과학대학 화학과) ;
  • 이갑득 (동국대학교 자연과학대학 화학과)
  • Published : 2007.08.30

Abstract

In proton therapy, the Bragg peak is spread out by modulating or degrading the energy of the particles to cover a well-defined target volume at a given depth. Proton transfer plays a key role in a variety of biological, the origin of the elements, tests of the standard model along with applications in medicine, industry and chemical phenomena such as water autoionization, fast proton diffusion, acid-base neutralization. We have studied the radiolysis of various natural resources and have evaluated the antioxidant activity of radiolysis products by proton beam. The most of antioxidant activities of natural resources were decreased with increasing proton fluence. Proton beam induced antioxidant activities both in 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay and 2,2'-azinobis(3-ethylbenzot hialozinesulfonic acid) cation radical $(ABTS^{.+})$ assay by a dose dependent fashion.

합성항산화제 3종과 17종의 식물 추출물을 이용하여 양성자 빔을 1,000, 5,000, 10,000 Gray 수준으로 처리하여 에너지양에 따른 항산화 활성에 미치는 영향을 탐색 하고자 DPPH radical 소거능 과 ABTS cation radical 소거능의 활성에 대하여 조사하였다. 이중 6종류의 시료는 양성자 빔을 조사한 결과 활성이 감소하였으며, 2종류의 시료는 활성변화가 없었으며, 12종류의 시료는 활성이 증가하였다. DPPH radical 소거 효과는 1,000 Gray 에서 마황은 60%, 괄루인은 5,000 Gray 에서 77.8%로 활성이 증가하는 경향을 나타내었다. ABTS cation radical 소거효과에서 토천궁은 1,000 Gray의 양성자 빔을 조사한 결과 38.5% 활성이 감소하였으며, 합성 항산화제는 활성변화가 거의 없으나, 뼝쑥 추출물은 5,000 Gray에서 $IC_{50}$값이 2.4 ${\mu}g/ml$로 BHT의 $IC_{50}$값 2.3 ${\mu}g/ml$과 유사하였다.

Keywords

References

  1. Babizhayev, M. A., M. C. Seguin, J. Gueyne, R. P. Evstigneeva. E. A. Ageyeva and G. A. Zheltukhina. 1994. L-carnosine ($\beta$-alanyl-L-histidine) and carcinine ($\beta$-alanylhistamine) act as natural antioxidants with hydroxyl radical-scavenging and lipid-peroxidase activities. J. Biochem. 304, 509-516. https://doi.org/10.1042/bj3040509
  2. Barnes, H. T. and C. C. Akoh. 2003. Effect of $\alpha$-tocopherol, $\beta$-carotene and isoflavones on lipid oxidation of structured lipid-based emulsions. J. Agric. Food Chem. 51, 6858-6860.
  3. Bae, C. H. 2005. Development of new ornamental plants and analysis of the mutants derived from ion beam irradiated plant organisms. Proton Engineering Frontier Project, Korea Atomic Energy Research Institute.
  4. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  5. Brand-Willams, W., M. E. Cuvelier and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss. u.-Technol. 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  6. Brieskorn, C. H., A. Fuch, J. B., Bredenberg, J. D. Mcchensney and E. Wenkert. 1964. The structure of carnosol. J. Org. Chem. 29, 2293-2299. https://doi.org/10.1021/jo01031a044
  7. Foote, C. S. and R. W. Denny. 1968. Chemistry of singlet oxygen quenching by $\beta$-carotene. J. Am. Chem. Soc. 90, 6233-6239. https://doi.org/10.1021/ja01024a061
  8. Gutfinger, T. 1981. Polyphenols in olive oils. J. Am. Oil. Chem. Soc. 58, 966-968. https://doi.org/10.1007/BF02659771
  9. Hayes, R. E., G. N. Bookwalter and E. B. Bagley. 1977. Antioxidant activity of soybean flours and derivatives-A review. J. Food Sci. 42, 1527-1632. https://doi.org/10.1111/j.1365-2621.1977.tb08417.x
  10. J. K. Jangand and J. Y. Han. 2002. The antioxidant ability of grape seed extracts. Korean J. Food Sci. Technol. 34, 524-528.
  11. Jeong, M. R., B. S. Kim and Y. E. Lee. 2002. Physicochemical characteristics and antioxi dative effects of Korean figs. J. East. Asian. Soc. Dietary. Life. 6, 12-17.
  12. Jung, G. T., I. O. Ju., J. S. Choi and J. S. Hong. 2000. The antioxidative, antimicrobial and nitrate scavenging effects of Schizandra Chines is Ruprecht (Omija) seed. Korean J. Food Sci. Technol. 32, 928-935.
  13. Kwon, H. J. 2005. Inducing mutation of mushroom by using proton beam. Proton Engineering Frontier Project, Korea Atomic Energy Research Institute.
  14. K. Miura and N. Nakatani. 1989. Antioxidative activity of flavonoid from Thyme. Agric. Biol. Chem. 53, 3043-3045. https://doi.org/10.1271/bbb1961.53.3043
  15. Kim, S. M., E. J. Kim, Y. S. Cho and S. K. Sung. 1999. Antioxidant of pine extracts according to preparation method. J. Korean Soc. Food Nutr. 28, 984-989.
  16. Kim, Y, J., G. J. Cho and J. H. Song. 2007. Ag+concentration effect on the shape of Au nanomaterials under proton beam irradiation. NIMB. B254, 73-77.
  17. Lee, I. K., Yun B. S., Y. H. Kim and I. D. Yoo. 2002. Two Neuroprotective Compounds from Mushroom Daldinia concenirica. J. Microbiol. Biotechnol. 12, 692-694.
  18. Marfak, G. M., Trouillas, P., D. P. AIIais and J. L. Duroux. 2003. Radiolysis of Kaempferol in Water/Methanol Mixtures. Evaluation of Antioxidant Activity of Kaempferol and Products Formed. J. Agric. Food Chem. 51, 1270-1277. https://doi.org/10.1021/jf020836g
  19. Marnett, L. J. 1987. Peroxyl free radical: potential mediators of tumor initiation and promotion. Carcinogenesis 8, 1365-1373. https://doi.org/10.1093/carcin/8.10.1365
  20. Sangor, M. R. and D. E. Pratt. 1974. Lipid oxidation and fatty acid changes in beef combined with vegetables and textured vegetable protein. J. Am. Diet. Assoc. 64, 268-270.
  21. Y. I. Lee and K. S. Lee. 2005. Mutation breeding of ornamental and vegetable crops by using Ion beam. Proton Engineering Frontier Project, Korea Atomic Energy Research Institute.