DOI QR코드

DOI QR Code

Genetic Diversity and Population Structure of Pseudobagrus fulvidraco in the Nakdong River

낙동강에 분포하는 동자개 집단의 유전적 다양성과 집단구조

  • Huh, Man-Kyu (Department of Molecular Biology, Dong-Eui University) ;
  • Choi, Joo-Soo (Department of Molecular Biology, Dong-Eui University) ;
  • Heo, Youn-Seong (Department of Molecular Biology, Dong-Eui University) ;
  • Lee, Bok-Kyu (Department of Molecular Biology, Dong-Eui University)
  • 허만규 (동의대학교 분자생물학과) ;
  • 최주수 (동의대학교 분자생물학과) ;
  • 허윤성 (동의대학교 분자생물학과) ;
  • 이복규 (동의대학교 분자생물학과)
  • Published : 2007.07.30

Abstract

Enzyme electrophoresis was used to estimate genetic diversity and population genetic structure of Pseudobagrus fulvidraco in Korea. Nine of the 14 loci (64.3%) showed detectable polymorphism. Genetic diversity at the population and species levels were 0.286 and 0.277, respectively. Analysis of fixation indices, calculated for all polymorphic loci in each population, showed a substantial deficit of hetero-zygotes relative to Hardy-Weinberg expectations. This deficit is expected that it is due to a limited effective number of individuals per population. The average $G_{ST}$ for polymorphic loci was 0.064, indicating that most (93.6%) of the genetic diversity occurred within populations. The indirect estimate of gene flow based on mean $G_{ST}$ was 3.67. Given limited gene flow is expected to diverge genetically due to drift and reduced populations. Most populations in our study experience annual, severe demo-graphic bottlenecks due to drought and floods.

전분 젤 전기영동을 사용하여 한국내 분포하는 동자개 여섯 집단에서 유전적 다양성과 집단구조를 평가하였다. 14개 대립유전자좌위에서 9좌위가 다형현상을 나타내었다(64.3%). 종수준과 집단수준에서 유전적 다양성은 각각 0.286과 0.277이였다. Wright의 고정지수에서 Hardy-Weinberg 평형에 비해 전반적인 이형접합체 결핍이 나타났다. 이 결핍은 집단내 유효한 개체수의 부족을 시사한다. 집단간 유전적 분화 정도는 0.064로 대부분의 유전적 변이(93.6%)가 집단내에 있음을 의미한다. 간접적으로 평가된 집단간 이주하는 개체수는 3.67로 나타났다. 제한된 유전자 유동과 유효집단의 감소는 유전적 부동을 유발하고, 주기적인 포획으로 인한 개체수의 감소는 유전자 상실로 이어지고 있다. 대부분의 집단이 겨울철 가뭄과 여름철 홍수로 심한 병목을 겪고 있었다.

Keywords

References

  1. Bunje, P. M. E., M. Barluenga and A. Meyer. 2007. Sampling genetic diversity in the sympatrically and allopatrically speciating Midas cichlid species complex over a 16 year time series, BMC Eviol. Biol. 7, 25 https://doi.org/10.1186/1471-2148-7-25
  2. Chakraborty, R. and O. Leimar. 1987. Genetic Variation within a subdivided Population, pp. 89-119, In Raman, N. and F. Utter (eds.), Population Genetics and Fisheries Management, University of Washington Press, Seattle
  3. Doyle, R. W., R. P. Enriquez, M. Takagi and N. Taniguchi. 2001. Selective recovery of founder genetic diversity in aquaticultural broodstocks and captive, endangered fish populations. Genetica 111, 291-304 https://doi.org/10.1023/A:1013772205330
  4. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version 3.5s. Distributed by the Author. Department of Genetics, Univ. Washington, Seattle
  5. Gyllensten, U. and N. Ryman. 1988. Biochemical genetic variation and population structure of fourhorn sculpin (Myoxocephalus quadricornis; Cottidae) in Scandinavia. Hereditas 108, 179-185 https://doi.org/10.1111/j.1601-5223.1988.tb00299.x
  6. Han, K. N. 2001. Feeding habits of larva and juvenile of the Korean bullhead, Pseudobagrus fulvidraco (Richardson). J. Aquaculture 14, 35-42
  7. Hartl, D. L. and A. G. Clark. 1989. Principles of Population Genetics. pp. 281-328, 2nd eds., Sinauer Associations, Inc., Sunderland, MA
  8. Kassam, D., S. Seki, B. Rusuwa, A. J. D. Ambali and K. Yamaoka. 2005. Genetic diversity within the genus Cynotilapia and its phylogenetic position among Lake Malawi's mbuna cichlids. Afr. J. Biotech. 4, 1195-1202
  9. Kim, Y. H., C. L. Lee and S. J. Jye-Gal. 2001. Histochemistry of the mucous cells in the skin of Pseudobagrus fulvidraco and Leiocassis niiidus (Bagridae, Siluriformes). Korean J. Ichthyol. 13, 93-99
  10. Li, C. C. and D. G. Horvitz. 1953. Some methods of estimating the inbreeding coefficient. Am. J. Hum. Genet. 5, 107-117
  11. Lim, S. K. and C. H. Han. 1997. Annual reproductive cycle of the banded catfish, Pseudobagrus fulvidraco (Richardson). J. Korean Fish. 30, 823-833
  12. Ma, H. Y., Y. L. Jiang, J. F. Guo and Y. S. Vue. 2006. Genetic diversity analysis on Pseudobagrus fulvidraco in Dong Ping Lake using microsatellite markers. Acta Laser Biology Sinica, Report
  13. Mitton, J. B. and W. M. Lewis. 1989. Relationships between genetic variability and life-historv features of bony fishes. Evolution 43, 1712-1723 https://doi.org/10.2307/2409387
  14. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl Acad. Sci. 70, 3321-3323 https://doi.org/10.1073/pnas.70.12.3321
  15. Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann. Hum. Geneti. 41, 225-233 https://doi.org/10.1111/j.1469-1809.1977.tb01918.x
  16. Nei, M, Murayama T, Chakraborty R. 1975. The bottleneck effect and genetic variability in populations. Evolution 29, 1-10 https://doi.org/10.2307/2407137
  17. Park, I. S., H. S. Oh and J. G. Koo. 2003. Effect of oral tamoxifen on growth and survival in the bagrid catfish Pseudobagrus fulvidraco. Aquaculture Research 34, 1471-1474 https://doi.org/10.1111/j.1365-2109.2003.00973.x
  18. Poudevigne, I. and J. Baudry. 2003. The implication of past and present landscape patterns fur biodiversity research: introduction and overview. Landscape Ecol. 18, 223-225 https://doi.org/10.1023/A:1024405014396
  19. Ruckelshaus, M. H. 1998. Spatial scale of genetic structure and an indirect estimate of gene flow in eelgrass, Zostera marina. Evolution 52, 330-343 https://doi.org/10.2307/2411071
  20. Schug, M. D., J. F. Downhower, L. P. Broqn, D. B. Sears and P. A. Fuerst. 1998. Isolation and genetic diversity of Gambusia hubbsi (mosquitofish) populations in blueholes on Andros Island, Bahamas. Heredity 80, 336-346 https://doi.org/10.1046/j.1365-2540.1998.00302.x
  21. Shin, Y. C. Y. G. Kim and S. W. Park. 2000. Classification and ultrastructural observation of leucocytes in Korean bullhead fish (Pseudobagrus fulvidraco). Fish Sci. Res. 16, 13-24
  22. Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39, 53-65 https://doi.org/10.2307/2408516
  23. Soltis, D. E., H. Haufler, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73, 9-27 https://doi.org/10.2307/1546611
  24. Weeden, N. F. and J. F. Wendel. 1989. Genetics of Plant Isozymes. pp. 46-72, In Soltis, D. E. and P. S. Soltis (eds.), Isozymes in Plant Biology, Dioscorides Press, Portland
  25. Workman, P. L. and J. D. Niswander. 1970. Population studies on southern Indian tribes, II. Local genetic differentiation in the Papago. Am. J. Hum. Genet. 22, 24-49
  26. Wright, S. 1922. Coefficients of inbreeding and relationship. Am. Nat. 56, 330-338 https://doi.org/10.1086/279872
  27. Wright, S. 1951. The genetical structure of populations. Ann. Eugen. 15, 323-354
  28. Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395-420 https://doi.org/10.2307/2406450
  29. Yeh, F. C., R. C. Yang and T. Boyle. 1999. POPGENE version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis

Cited by

  1. Ultrastructure of the Fertilized Egg Envelope from Pseudobagrus fulvidraco, Bagridae, Teleostei vol.46, pp.3, 2016, https://doi.org/10.9729/AM.2016.46.3.150