DOI QR코드

DOI QR Code

Sex Identification of Bovine Meat Using Male Specific SRY and ZFY Genes

웅성 특이적 SRY 및 ZFY 유전자를 이용한 쇠고기 성(性) 판별

  • Shin, Sung-Chul (Division of Animal Science and Resource, College of Life Science and Natural Resources, Sangji University) ;
  • Chung, Ku-Young (Division of Animal Science and Resource, College of Life Science and Natural Resources, Sangji University) ;
  • Chung, Eui-Ryong (Division of Animal Science and Resource, College of Life Science and Natural Resources, Sangji University)
  • 신성철 (상지대학교 생명자원과학대학 동물생명자원학부) ;
  • 정구용 (상지대학교 생명자원과학대학 동물생명자원학부) ;
  • 정의룡 (상지대학교 생명자원과학대학 동물생명자원학부)
  • Published : 2007.09.30

Abstract

The objective of this study was to develop a rapid and reliable method for the sex determination of beef using the PCR(polymerase chain reaction) technique. We have used two bovine sex determining genes, SRY and ZFY, on the Y-chromosome to identify the sex of Hanwoo and Holstein beet. We attempted to amplify 1,348 bp and 979 bp fragments from male and female genomic DNA corresponding to the SRY and ZFY genes, respectively, using male specific primers. The amplified PCR products were separated by electrophoresis in a 1.5% agarose gel to detect a male specific DNA band. When DNA from male beef was amplified with primers specific for the SRY gene, a DNA band of 1,348 bp was present in all of the male samples, but absent from all of the female samples. Also, when DNA from male beef was amplified with primers specific for the ZFY gene, a DNA band of 979 bp was observed in all of the male samples, but absent from all female samples. In conclusion, the bovine SRY and ZFY genes are typically found only in male beef. For the practical application of this method for the sexing of commercial beef at the processing and marketing stages after slaughter. a total of 350 beef samples collected randomly from local markets were analyzed for sex determination. The proportions of male and female samples were 252 (72%) and 98 (28%), respectively. Therefore. the SRY and ZFY genes. which are specific for the Y-chromosome, may be useful sex-diagnostic DNA markers to distinguish male meat from female meat.

본 연구는 포유류의 Y-염색체상에 존재하는 SRY 및 ZFY의 웅성 특이적 성 결정 유전자를 이용하는 PCR 기법으로 쇠고기 성판별 기술을 개발하고자 수행하였다. 성 결정 유전자 영역의 특정 염기서열을 포함하는 primer를 각각 설계 합성하고 이들 primer를 이용하여 PCR증폭을 실시한 다음, 각각의 증폭산물을 1.5% agarose gel에 전기영동하여 웅성 특이적 DNA band의 증폭여부를 확인하였다. SRY 유전자에서 웅성개체 쇠고기는 1,348 bp 크기의 단편을 가진 DNA band가 검출되었으나, 자성개체의 경우 DNA band가 전혀 검출되지 않은 것을 확인 할 수 있었다. 또한, ZFY 유전자에서 웅성개체의 쇠고기는 979 bp 크기의 단편을 가진 DNA band가 모두 검출되었으나, 자성개체의 쇠고기에서는 역시 DNA band가 전혀 검출되지 않았다. 즉, SRY 및 ZFY 유전자는 모두 숫소에서 유래한 쇠고기에서 웅성 특이적인 DNA band가 정확히 검출된 반면 암소에서 유래한 쇠고기에서는 웅성 특이적 DNA band가 전혀 검출되지 않았다. 또한 쇠고기 성 감별법을 도축 후 가공 유통판매단계에 실제 활용 가능성을 검증하고자 시중에 유통되고 있는 등심 및 갈비 포장육 350시료를 무작위 추출하여 성 판별을 실시한 결과 숫소가 252시료(72%) 그리고 암소가 98두(28%)로 조사되었다. 따라서 본 연구에서 개발한 SRY 또는 ZFY의 웅성 특이적 성 결정 유전자를 이용하는 쇠고기 성 감별기술은 생산단계는 물론 도축 후 가공 유통 판매되고 있는 모든 쇠고기의 암수 성감별을 위한 유용한 DNA 표지인자로 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Aasen, E. and Medrano, J. F. (1990) Amplification of the ZFY and ZFX genes for sex identification in humans, cattle, sheep and goats. Bio/technology 8, 1279-1281 https://doi.org/10.1038/nbt1290-1279
  2. Angelo, M. and Moreira, M. (2002) SRY evolution in Cebidae (Platyrrhini: Primates). J. Mol. Evol. 55, 92-103 https://doi.org/10.1007/s00239-001-2308-7
  3. Bondioli, K. R., Ellis, S. B., Pryor, J. H., Williams, M. W., and Harpoid M. M. (1989) The use of male-specific chromosomal DNA fragments to determine the sex of bovine preimplantation embryos. Theriogenology 31, 95-104 https://doi.org/10.1016/0093-691X(89)90567-0
  4. Cho, I. C., Kang, S. Y., Lee, S. S., Choi, Y. L., Ko, M. S., Oh, M. Y., and Han, S. H. (2005) Molecular sexing using SRY and genes in pigs. J. Anim. Sci. Technol. 47, 317-324 https://doi.org/10.5187/JAST.2005.47.3.317
  5. Clawson, M. L., Heaton, M. P., Fox, J. M., Chitko-McKown, C. G., Smith, T. P. L., and Kaegreid, W. W. (2004) Male-specific SRY and ZFY haplotypes in US beef cattle. Anim. Genet. 35, 245-264
  6. Graves, J. A. and Westerman, M. (2002) Marsupial genetics and genomics. Trends. Genet. 18, 517-521 https://doi.org/10.1016/S0168-9525(02)02772-5
  7. Hwang, Y. S., Han, Y. M., Lee, C. S., Kim, S. G., and Lee, K. G. (1995) Sex determination of bovine embryos by polymerase chain reaction. Korean J. Anim. Reprod. 18, 275-284
  8. Itagaki, Y., Sato, S., Shitanaka, Y., Kudo, T., Yamaguchi, Y., and Sutou, S.(1993) Sexing of bovine embryos with malespecific repetitive DNA by polymerase chain reaction: Sexing of bovine embryos and production of calves of with predicted sex. J. Reprod. Dev. 39, 65-72 https://doi.org/10.1262/jrd.39.65
  9. Kageyama, S., Moriyasu, S., Tabata, T., and Chikuni, K. (1992) Amplification and sequence analysis of SRY (sexdetermining region Y) conserved region of domestic animals using polymerase chain reaction. Anim. Sci. Technol. (Jpn) 63, 1059-1065
  10. Kim, D. J., Cheon, Y. H., Jang, A. R., Lee, S. O., Min, J. S., and Lee, M. (2002) Determination of Physico-chemical properties and quality attributes of Hanwoo beef with grade and sex. J. Anim. Sci. Technol. 44, 599-606 https://doi.org/10.5187/JAST.2002.44.5.599
  11. Kobayashi, J., Sekimoto, A., Uchida, H., Wada, T., Sasaki, K., Sasada, H., Umezu, M., and Sato, E. (1998) Rapid detection of male-specific DNA sequence in bovine embryos using fluorescence in situ hybridization. Mol. Reprod. Dev. 51, 390-394 https://doi.org/10.1002/(SICI)1098-2795(199812)51:4<390::AID-MRD5>3.0.CO;2-F
  12. Kudo, T., Sato, S., and Sutou, S. (1993) Sexing of bovine embryos using male-specific repetitive DNA by polymerase chain reaction. I. Clonig and characterization of bovine male-specific repetitive DNA. J. Reprod. Dev. 39, 55-63 https://doi.org/10.1262/jrd.39.55
  13. Lee, J .M., Park, B. Y., Cho, S. H., Kim, J. H., Yoo, Y. M., Chae, H. S., and Choi, Y. I. (2005) Analysis of carcass quality grade components and chemico-physical and sensory traits of M. longissimus dorsi in Hanwoo. J. Anim. Sci. Technol. 46, 833-840
  14. Liu, W. S., Mariani, P., Beattie, C. W., Alexander, L. J., and Ponce De Leon, F. A. (2002) A radiation hybrid map for the bovine Y Chromosome. Mamm. Genome 13, 320-326 https://doi.org/10.1007/s00335-001-2133-8
  15. Miller, S. A., Dykes, D. D., and Polesky, H. F. (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215 https://doi.org/10.1093/nar/16.3.1215
  16. Miller, J. R. and Koopman, M. (1990) Isolation and characterization of two-male specific DNA fragment from the bovine gene. Anim. Genet. 21, 77-87 https://doi.org/10.1111/j.1365-2052.1990.tb03209.x
  17. Nagai, K. (2001) Molecular evolution of SRY and SOX gene. Gene 270, 161-169 https://doi.org/10.1016/S0378-1119(01)00479-6
  18. Park, J. H., Lee, K. H., Choi, K. M., Joung, S. Y., Kim, J. Y., Chung, G. H., Jin, D. I., and Im, K. S. (2001) Rapid sexing of preimplantation bovine embryo using consecutive and multiplex polymerase chain reaction(PCR) with biopsied single blastomere. Theriogenology 55, 1843-1853 https://doi.org/10.1016/S0093-691X(01)00526-X
  19. Park, G. B., Moon, S. S., Ko, Y. D., Ha, J. K., Lee, J. G., Chang, H. H., and Joo, T. (2002) Influence of slaughter weight and sex on yield and quality grades of Hanwoo (Korean native cattle) carcasses. J. Anim. Sci. 80, 129-136
  20. Tucker, P. K., Adkins, R. M., and Rest, J. S. (2003) Differential rates of evolution for the ZFY-related zinc finger genes, Zfy, Zfx, and Zfa in the mouse genus. Mus. Mol. Biol. Evol. 20, 999-1005 https://doi.org/10.1093/molbev/msg112
  21. Xiao, C., Tsuchiya, K., and Sutou, S. (1998) Cloning and mapping of bovine ZFX gene to the long arm of the X-chromosome (Xq34) and homologous mapping of ZFY gene to the distal region of the short arm of the bovine (Yp13), ovine (Yp12-p13), and caprine (Yp12-p13) Y chromosome. Mamm. Genome 9, 125-130 https://doi.org/10.1007/s003359900702
  22. 축산물등급판정소 (2005) 축산물 등급판정 통계. 소도체등급 판정자료