DOI QR코드

DOI QR Code

구리 및 아연의 수준별 급여가 비육돈의 생산성, 영양소 소화율, 육질 및 도체 특성에 미치는 영향

Effects of Copper and Zinc Supplementation on Growth Performance, Nutrient Digestibility, Meat and Carcass Characteristics in Finishing Pigs

  • 김영화 (농촌진흥청 축산연구소) ;
  • 김해진 (단국대학교 동물자원과학과) ;
  • 박준철 (농촌진흥청 축산연구소) ;
  • 정현정 (농촌진흥청 축산연구소) ;
  • 조진호 (단국대학교 동물자원과학과) ;
  • 진영걸 (단국대학교 동물자원과학과) ;
  • 유종상 (단국대학교 동물자원과학과) ;
  • 김인철 (농촌진흥청 축산연구소) ;
  • 이상진 (농촌진흥청 축산연구소) ;
  • 김인호 (단국대학교 동물자원과학과)
  • Kim, Y.H. (Swine Research Division, National Livestock Research Institute) ;
  • Kim, H.J. (Department of Animal Resource & Science, Dankoon University) ;
  • Park, J.C. (Swine Research Division, National Livestock Research Institute) ;
  • Jung, H.J. (Swine Research Division, National Livestock Research Institute) ;
  • Cho, J.H. (Department of Animal Resource & Science, Dankoon University) ;
  • Chen, Y.J. (Department of Animal Resource & Science, Dankoon University) ;
  • Yoo, J.S. (Department of Animal Resource & Science, Dankoon University) ;
  • Kim, I.C. (Swine Research Division, National Livestock Research Institute) ;
  • Lee, S.J. (Swine Research Division, National Livestock Research Institute) ;
  • Kim, I.H. (Department of Animal Resource & Science, Dankoon University)
  • 발행 : 2007.09.30

초록

본 연구는 비육돈 사료내 구리와 아연의 수준별 급여가 생산성, 영양소 소화율, 육질 및 도체 특성에 미치는 영향을 알아보기 위해 실시하였다. 3원 교잡종$(Landrace{\times}Yorkshire{\times}Duroc)$ 비육돈 72두를 공시하였으며, 시험개시 시의 체중은 58.47 kg이었다. 시험설계는 $2{\times}3$ 요인설계(Cu $level{\times}Zn$ level)에 의해 6개 처리로 하여 처리당 3반복, 반복당 4두씩 완전임의 배치하였다. 본 연구에 사용된 구리와 아연의 공급원은 각각 Cu-methionine chelate와 Zn-methionine chelate 이었으며, 사료내 함량은 각각 10, 30 및 60 ppm과 80 및 120 ppm 이었다. 전체사양시험기간 동안 ADG와 ADFI에서는 구리 함량, 아연 함량 및 상호작용에 대한 유의한 효과가 나타나지 않았다. 사료효율에서는 유의한 상호작용이 나타났는데(p<0.05), 구리와 아연함량이 각각 30과 120 ppm일때 가장 높게 나타났다. 건물 소화율에서는 구리 함량(p<0.02), 아연 함량(p<0.01) 및 상호작용(p<0.04)에 대한 유의한 효과가 나타났는데, 구리함량이 감소할수록 증가하였고, 아연 함량은 증가할수록 증가하였으며, 구리와 아연 함량이 각각 30과 120 ppm일 때 가장 높게 나타났다. 질소 소화율에서는 아연 함량(p<0.01)과 상호작용(p<0.03)에서 유의한 효과가 나타났는데, 아연 함량이 증가할수록 증가하였고 구리와 아연 함량이 각각 30과 120 ppm일때 가장 높게 나타났다. 명도를 나타내는 $L^*-$값, 전단력, 가열감량 및 pH에서는 유의한 효과가 나타나지 않았다. 적색도를 나타내는 $a^*-$값 (p<0.04)과 황색도를 나타내는 $b^*-$값 (p<0.01)에서는 아연함량에 대한 효과가 나타났는데, 사료내 아연 함량이 감소할수록 증가하였다. 보수력에서는 유의한 상호작용이 나타났는데(p<0.01), 구리와 아연 함량이 각각 10과 120 ppm일 때 가장 높게 나타났다. 도체중, 등지방 두께, 도체등급에서는 유의한 효과가 나타나지 않았다. 도체율에서는 유의한 상호작용이 나타났는데(p<0.04), 구리와 아연 함량이 각각 30과 120 ppm일때 가장 높게 나타났다. 결론적으로 비육돈 사료내 구리와 아연의 함량이 각각 30 ppm과 120 ppm일때 사료효율, 영양소 소화율 및 도체율을 개선시켰으면 각가 10 ppm과 120 ppm일때 보수력을 개선시켰다.

This study was conducted to investigate the effects of copper and zinc supplementation on growth performance, nutrient digestibility, and meat and carcass characteristics in finishing pigs. A total of 72 $(Landrace{\times}Yorkshire{\times}Duroc)$ pigs (58.47 kg initial BW) were assigned to 6 treatments in a $2{\times}3$ factorial design $(Zn\;levels{\times}Cu\;levels)$. The sources of zinc and copper were Zn-methionine chelate and Cu-methionine chelate, respectively. Zinc levels used were 80 and 120 ppm and copper levels used were 10, 30 and 60 ppm. Throughout the entire experimental period, the average daily gain (ADG) and average daily feed intake (ADFI) were not significantly affected by Cu or Zn levels, or their relative levels. The G:F ratio was significantly affected by the relative levels of Cu and Zn (p<0.05), specifically at 30 ppm Cu and 120 ppm Zn. Dry matter digestibility was significantly affected by the levels of Cu (p<0.02), Zn (p<0.01) and the relative levels of each (p<0.04), in particular at 30 ppm Cu and 120 ppm Zn. Nitrogen digestibility was significantly affected by Zn levels (p<0.01) and the combination of 30 ppm Cu and 120 ppm Zn (p<0.03). The $L^*-value$, shear force, cooking loss and pH were not significantly affected by Cu levels, Zn levels or their combination. The $a^*- (p<0.04)\;and\;b^*- values (p<0.01)$ were significantly affected by Zn levels at 80 ppm. The Water hoding capacity was significantly affected by Cu and Zn in combination (p<0.01) at 10 ppm Cu and 120ppm Zn. The carcass weight, backfat thickness and carcass grade were not significantly affected by Cu levels, Zn levels or their relative levels. The carcass percentage was significantly affected by the combination (p<0.04) of 30ppm Cu and 120ppm Zn. In conclusion, dietary supplementation of Cu and Zn at 30 and 120 ppm, respectively, is effective for feed efficiency, nutrient digestibility and carcass percentage, while at the levels of Cu at 10 ppm and Zn at 120 ppm have effects on WHC.

키워드

참고문헌

  1. Amer, A. M. and Elliot, J. I. (1973) Effects of level of copper supplement and removal of supplemental copper from the diet on the physical and chemical characteristics of porcine depot fat. Can. J. Anim. Sci. 53, 139-145 https://doi.org/10.4141/cjas73-021
  2. AOAC (1995) Official method of analysis. 16th ed. Association of official Analytical Chemists, Washington, DC
  3. Ashmead, H. D. (1993) The role of Amino Acids Chelates in Animal Nutrition. Noyes Publications. New Jersey
  4. Carlson, M. S., Hill, G. M., Link, J. E., McCully, G. A., Rozeboom, D. W., and Weavers, R. L. (1995) Impacts of zinc oxide and copper sulfate supplementation on the newly weaned pig. J. Anim. Sci. 73(suppl. 1),72
  5. Edmonds, J. S., Izquiendo, O. A., and Baker, D. H. (1985) Feed additive studies with newly weaned pigs: Efficacy of supplemental copper, antibiotics and organic acid. J. Anim. Sci. 60, 462-479 https://doi.org/10.2527/jas1985.602462x
  6. Engle, T. E., Spears, J. W., Armstrong, T. A., Wright, C. L., and OdIe, J. (2000) Effects of dietary copper source and concentration on carcass characteristics and lipid and cholesterol metabolism in growing and finishing steers. J. Anim. Sci. 78, 1053-1059
  7. Hahn, J. D. and Baker, K. H. (1993) Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc. J. Anim. Sci. 71, 3020
  8. Hill, G. M., Cromwell, G. L., Crenshaw, T. D., Ewan, R. C., Knabe, D. A., Lewis, S. J., Mahan, D. C., Shurson, G. C., Southern, L. L., and Veum, T. L., NCR-42 and S-145 Regional Swine Nutrition Committees. (1996) Impact of pharmacological intakes of zinc and(or) copper on performance of weanling pigs. J. Anim. Sci. 74(Suppl. 1), 181
  9. Hong, S. J., Lim, H. S., and Paik, I. K. (2002) Effects of Cu and Zn-methionine chelates supplementation on the performance of broiler chickens. J. Anim. Sci. Technol. 44, 399-406 https://doi.org/10.5187/JAST.2002.44.4.399
  10. Kavangh, N. T. (1992) The effect of feed supplemented with zinc oxide on the performance of recently weaned pigs. Proc.: Int. Pig Vet. Meetings
  11. Kim, B. H., Lim, H. S., Namkung, H., and Paik, I. K. (2003) Effect of copper chelates (methionine-Cu, chitosan-Cu and yeast-Cu) as the supplements to weaning pig diet. J. Anim. Sci. Technol. 45,49-56 https://doi.org/10.5187/JAST.2003.45.1.049
  12. Kratzer, F. H. and Vohra, P. (1986) Chelates in Nutrition. CRC press, Inc., Boca Raton, FL
  13. Laakkonen, E., Wellington, G. H., and Skerbon, J. W. (1970) Low temperature long time heating of bovine muscle. J. Food Sci. 35, 175-177 https://doi.org/10.1111/j.1365-2621.1970.tb12131.x
  14. Lawrie, R. A. (1985) Packaging fresh meat. In: Development in meat science. Taylor, A. A. (ed), Elsevier Applied Science Piblisher. p. 89
  15. LeMieux, F. M., Ellison, L. V., Ward, T. L., Southern, L. L., and Bidner, T. D. (1995) Excess dietary zinc for pigs weaned at 28 days. J. Anim. Sci. 73(suppl. 1), 72
  16. McNaughton, J. L., Day, E. L., Dilworth, B. C., and Lott, B. D (1974) Iron and copper availability from various sources. Poult. Sci. 53, 1325-1330 https://doi.org/10.3382/ps.0531325
  17. Miller, D., Soares, Jr. J. H., Bauersfeld, Jr. P., and Cupett, S. L. (1972) Comparative selenium retention by chicks fed sodium selenit, selenomethionine, fish meal and fish solubles. Poult. Sci. 51, 1669-1673 https://doi.org/10.3382/ps.0511669
  18. NRC (1998) Nutrient Requirements of swine. National Research Council, Academy Press
  19. Paik, I. K. (2001) Application of Chela ted Minerals in Animal Production. Asian-Aust. J. Anim. Sci. 14(Speciallssue), 1991-1998
  20. Pesti, E. G. and Bakalli, R. I. (1996) Studies on the feeding of cupric sulfate penthahydrate and cupric citrate to broiler chickens. Poult. Sci. 75, 1086-1091 https://doi.org/10.3382/ps.0751086
  21. Poulsen, H. D. (1992) Zinc oxide for weaned pigs. Eleventh annual Prince feed ingredient conference. Dublin. Ireland. Appendix 1
  22. Spears, J. W. (1992) The bioavailability of zinc, copper and manganese animo acid complexes and chelates. NFIA, Nutrition Institute
  23. SAS (1996) SAS user's guide. Release 6.12 edition. SAS Institute. Inc., Cary, NC, USA
  24. Smith, J. W., Tokach, M. D., Goodband, R. D., Nelessen, J. L., and Richert, B. T. (1997) Effects of the interrelationship between zinc oxide and copper sulfate on growth performance of early-weaned pigs. J. Anim. Sci. 75, 1861-1866
  25. Smith, J. W. ., Tokach, M. D., Goodband, R. D., Nelessen, J. L., Nessmith, Jr., Owen, K. Q., and Richert, B. T. (1995) The effect of increasing zinc oxide supplementation on starter pig growth performance. J. Anim. Sci. 67, 835
  26. Spears, J. W. and Kegley, E. B. (2002) Effect of zinc source (zinc oxide vs zinc proteinate) and level on performance, carcass characteristics, and immune response of growing and finishing steers. J. Anim. Sci. 80, 2747-2753
  27. Stahly, T. S., Cromwell, G. L., and Monegue, H. J. (1980) Effects of the dietary inclusion of copper and antibiotics on the performance of weaning pigs. J. Anim. Sci. 51, 1347-1352 https://doi.org/10.2527/jas1981.5161347x
  28. Warriss, P. D. and Brown, S. N. (1982) The relationships between initial pH, reflectance and exudation in pigs muscle. Meat Sci. 20, 65-74
  29. Zhou, W., Kornegay, E. T., Lindermann, M. D., Swinkels, J. W. G. M., Welton, M. K., and Wong, E. A. (1994) Stimulation of growth by intrave-nous injection on copper in weanling pigs. J. Anim. Sci. 72, 2395-2403
  30. Zoubek, G. L., Pea, Jr. E. R., Moser, B. D., Stahly, T., and Cunningham, P. J. (1975) Effects of source on copper uptake by swine. J. Anim. Sci. 40, 880-884 https://doi.org/10.2527/jas1975.405880x