DOI QR코드

DOI QR Code

Removal Efficiency of the Heavy Metals Zn(II), Pb(II) and Cd(II) by Saprolegnia delica and Trichoderma viride at Different pH Values and Temperature Degrees

  • Ali, Esam H. (Botany Department, Faculty of Science, Assiut University) ;
  • Hashem, Mohamed (Botany Department, Faculty of Science, Assiut University)
  • Published : 2007.09.30

Abstract

The removal efficiency of the heavy metals Zn, Pb and Cd by the zoosporic fungal species Saprolegnia delica and the terrestrial fungus Trichoderma viride, isolated from polluted water drainages in the Delta of Nile in Egypt, as affected by various ranges of pH values and different temperature degrees, was extensively investigated. The maximum removal efficiency of S. delica for Zn(II) and Cd(II) was obtained at pH 8 and for Pb(II) was at pH 6 whilst the removal efficiency of T. viride was found to be optimum at pH 6 for the three applied heavy metals. Regardless the median lethal doses of the three heavy metals, Zn recorded the highest bioaccumulation potency by S. delica at all pH values except at pH 4, followed by Pb whereas Cd showed the lowest removal potency by the fungal species and vice versa in case of T. viride. The optimum bio-mass dry weight production by S. delica was found when the fungus was grown in the medium treated with the heavy metal Pb at pH 6, followed by Zn at pH 8 and Cd at pH 8. The optimum biomass dry weight yield by T. viride amended with Zn, Pb and Cd was obtained at pH 6 for the three heavy metals with the maximum value at Zn. The highest yield of biomass dry weight was found when T. viride treated with Cd at all different pH values followed by Pb whilst Zn output was the lowest and this result was reversed in case of S. delica. The maximum removal efficiency and the biomass dry weight production for the three tested heavy metals was obtained at the incubation temperature $20^{\circ}C$ in case of S. delica while it was $25^{\circ}C$ for T. viride. Incubation of T. viride at higher temperatures ($30^{\circ}C\;and\;35^{\circ}C$) enhanced the removal efficiency of Pb and Cd than low temperatures ($15^{\circ}C\;and\;20^{\circ}C$) and vice versa in case of Zn removal. At all tested incubation temperatures, the maximum yield of biomass dry weight was attained at Zn treatment by the two tested fungal species. The bioaccumulation potency of S. delica for Zn was higher than that for Pb at all temperature degrees of incubation and Cd bioaccumulation was the lowest whereas T. viride showed the highest removal efficiency for Pb followed by Cd and Zn was the minor of the heavy metals.

Keywords

References

  1. Addour, L., Belhocine, D., Boudries, N., Comeau, Y., Pauss, A. and Mameri, N. 1999. Zinc uptake by Streptomyces rimosus biomass using a packed-bed column. J Chem. Technol. Biotechnol. 74: 1089-1095 https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1089::AID-JCTB143>3.0.CO;2-0
  2. Akar, T., Cabuk, A., Tunali, S. and Yamac, M. 2006. Biosorption potential of the macro fungus Ganoderma carnosum for removal of lead (II) ions from aqueous solutions. J Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 41: 2587-2606 https://doi.org/10.1080/10934520600927989
  3. Ali, E. H. 2007. Biodiversity of zoosporic fungi in polluted water drainages across Niles' Delta region, Lower Egypt. Acta Mycologica 42: in press
  4. Arica, M. Y., Bayramoglu, G, Yilmaz, M., Bektas, S. and Gene, O. 2004. Biosorption of $Hg^{2+}$, $Cd^{2+}$, and $Zn^{2+}$ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. J Hazardous Mater. 109: 191-209 https://doi.org/10.1016/j.jhazmat.2004.03.017
  5. Atkinson, B. W., Bux, F. and Kasan, H. C. 1998. Consideration for application of biosorption technology to remediate metalcontaminated industrial effluents. Water SA 24: 129-135
  6. Babich, H. and Stotzky, G. 1979. Abiotic factors affecting the toxicity of lead to fungi. Appl. Environ. Microbiol. 38: 506-513
  7. Babich, H. and Stotzky, G. 1982. Nickel toxicity to fungi: influence of environmental factors. Ecotoxicol Environ. Saf. 6: 577-589 https://doi.org/10.1016/0147-6513(82)90039-2
  8. Bayramoglu, G., Bektas, S. and Arica, M. Y. 2003. Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazardous Mater. 101: 285-300 https://doi.org/10.1016/S0304-3894(03)00178-X
  9. Bolton, H. and Gorby, Y. A. 1995. An overview of the bioremediation of metal-contaminated industrial effluents using waste sludges. Water Sci. Technol. 34: 9-15
  10. Brady, D., Stoll, A. and Duncan, J. R. 1994. Biosorption of heavy metals cations by non-viable yeast biomass. Environ. Technol 15: 429-438 https://doi.org/10.1080/09593339409385447
  11. Cabuk, A., Elhan, S., Filik, C. and Caleskan, F. 2005. $Pb^{+2}$ biosorption by pretreated fungal biomass. Turk. J Biol. 29: 23-28
  12. Chen, J. P. and Yiacaumi, S. 1997. Biosorption of metal ions from aqueous solutions. Sep. Sci. Technol. 32: 51-69 https://doi.org/10.1080/01496399708003186
  13. Churchill, S. A., Walters, J. V. and Churchill, P. F. 1995. Sorption of heavy metals by prepared bacterial cell surfaces. J Environ. Eng. 121: 706-711 https://doi.org/10.1061/(ASCE)0733-9372(1995)121:10(706)
  14. Errasquin, E. L. and Vazquez, C. 2003. Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50: 137-143 https://doi.org/10.1016/S0045-6535(02)00485-X
  15. Fourest, E., Canal, C. and Roux, J. C. 1994. Improvement of heavy metal biosorption by mycelial dead biomass (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenun): pH control and cationic activation. FEMS Microbiol Rev. 14: 325-332 https://doi.org/10.1111/j.1574-6976.1994.tb00106.x
  16. Gadd, G. M. 1990. Heavy metal accumulation by bacteria and other microorganisms. Experientia 46: 834-839 https://doi.org/10.1007/BF01935534
  17. Gadd, G. M. 1992. Microbial control of heavy metal pollution. In: Fry, J. C., Gadd, G. M., Herbert, R. A., Jones, C. W. and Watson-Craik, I. A. Eds., Microbial control of pollution, Cambridge University Press, Cambridge
  18. Gadd, G. M. 1993. Interactions of fungi with toxic metals. New Phytol. 124: 25-60 https://doi.org/10.1111/j.1469-8137.1993.tb03796.x
  19. Galli, E., Mario, F. Di., Rapana, P., Lorenzoni, P. and Angelini, M. 2003. Copper biosorption by Auricularia polytricha. Lett. Appl. Microbiol. 37: 133-137 https://doi.org/10.1046/j.1472-765X.2003.01354.x
  20. Galun, M., Keller, P., Malki, D., Feldstein, H., Galun, E., Siegel, S. and Siegel, B. 1983 a. Recovery of uranium (VI) from solution using precultured Penicillium biomass. Water Air Soil Pollut. 20: 221-232 https://doi.org/10.1007/BF00279632
  21. Galun, M., Keller, P., Feldstein, H., Galun, E., Siegel, S. and Siegel, B. 1983b. Recovery of uranium (VI) from solution using fungal II. Release from uranium-loaded Penicillium biomass. Water Air Soil Pollut. 20: 277-285
  22. Galun, M., Galun, E., Siegel, B. Z., Keller, P., Lehr, H. and Siegel, S. M. 1987. Removal of metal ions from aqueous solutions by Penicillium biomass: Kinetic and uptake parameters. Water Air Soil Pollut. 33: 359-371 https://doi.org/10.1007/BF00294204
  23. Garcia-Toledo, A., Babich, H. and Stotzky, G. 1985. Training of Rhizopus stolonifer and Cunninghamella blakesleeana to copper: co-tolerance to cadmium, cobalt, nickel and lead. Can. J Microbiol. 31: 485-492 https://doi.org/10.1139/m85-090
  24. Gardea-Torresdey, J. L., Cano-Aguilera, I., Webb, R., Tiemann, K. J. and Gutierrez-Corona, F. 1996. Copper adsorption by inactivated cells of Mucor rouxii: effect of esterification of carboxyl groups. J Hazardous Mater. 48: 171-180 https://doi.org/10.1016/0304-3894(95)00148-4
  25. Gomes, N. C. M., Mendonca-Hagler, L. C. S. and Savaidis, I. 1998. Metal Biorremediation by Microorganisms. Rev. Microbiol. 29: 85-92
  26. Guibal, E., Roulph, C. and Leclourec, P. 1992. Uranium biosorption by the filamentous fungus Mucor miehei, pH effect on mechanisms and performance of uptake. Water Res. 26: 1139-1145 https://doi.org/10.1016/0043-1354(92)90151-S
  27. Huang, C. and Huang, C. P. 1996. Application of Aspergillus oryzae and Rhizopus oryzae for Cu (IT) removal. Water Res. 30: 1985-1990 https://doi.org/10.1016/0043-1354(96)00020-6
  28. Huang, C. P., Westman, D., Quirk, K. and Huang, J. P. 1988. The removal of cadmium (II) from dilute aqueous solutions by fungal adsorbent. Water Sci. Technol. 20: 369-376 https://doi.org/10.2166/wst.1988.0308
  29. Huang, P., Huang, C. P. and Morehart, A. L. 1991. Proton competition in Cu (II) adsorption by fungal mycelia. Water Res. 25: 1365-1375 https://doi.org/10.1016/0043-1354(91)90115-7
  30. Hughes, M. N. and Poole, R. K. 1989. Metals and microorganisms, London: Chapman & Hall; p. 10
  31. Junior, L. M. B., Macedo, G. R., Duarte, M. M. L., Silva, E. P. and Lobato, A. K. 2003. Biosorption of cadmium using the fungus Aspergillus niger. Braz. J Chem. Eng. 20: 53-61
  32. Kapoor, A. and Viraraghavan, T. 1998. Biosorption of heavy metals on Aspergillus niger: Effect of pretreatment. Bioresource Technol. 63: 109-113 https://doi.org/10.1016/S0960-8524(97)00118-1
  33. Kapoor, A., Viraraghavan, T. and Cullimore, D. R. 1999. Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technol. 70: 95-104 https://doi.org/10.1016/S0960-8524(98)00192-8
  34. Khoo, K. M. and Ting, Y. P. 2001. Biosorption of gold by immobilized fungal biomass. Biochem. Engin. J 8: 51-59 https://doi.org/10.1016/S1369-703X(00)00134-0
  35. Knorr, D. 1991. Recovery and utilization of chitin and chitosan in food processing waste management. Food Technol. 45: 114-122
  36. Kratochvil, D. and Volesky, B. 1998. Advances in the biosorption of heavy metals. Trends Biotechnol. 16: 291-300 https://doi.org/10.1016/S0167-7799(98)01218-9
  37. Kuyucak, N. and Volesky, B. 1988. Biosorbents for recovery of metals from industrial solutions. Biotechnol. Lett. 10: 137-142 https://doi.org/10.1007/BF01024641
  38. Li, Z. and Yuan, H. 2006. Characterization of cadmium removal by Rhodotorula sp. YII. Appl. Microbiol. Biotechnol. 73: 458-63 https://doi.org/10.1007/s00253-006-0473-8
  39. Lo, W., Chua, H., Lam, K. H. and Bi, S. P. 1999. A comparative investigation on the biosorption of lead by filamentous fungal biomass. Chemosphere 39: 2723-2736 https://doi.org/10.1016/S0045-6535(99)00206-4
  40. Macaskie, L. E. and Dean, A. C. R. 1989. Microbial metabolism, desolubilization and deportion of heavy metals: metal uptake by immobilized cells and application to the detoxification of liquid wastes. Biol. Waste Treatment 159-201
  41. Matheickal, J. T., Yu, Q. and Feltham, J. 1987. Cu(IT) binding by E. radiata biomaterial. Environ. Technol. 18: 25-34
  42. Mullen, M. D., Wolf, D. C., Ferris, F. G., Beveridge, T. J., Flemming, C. A. and Bailey, G. W. 1989. Bacterial sorption of heavy metals. Appl. Environ. Microbiol. 54: 3143-3149
  43. Mullen, M. D., Wolf, D. C, Beveridge, T. J. and Bailey, G. W. 1992. Sorption of heavy metals by soil fungi Aspergillus niger and Mucor rouxii. Soil Biol. Biochem. 24: 129-135 https://doi.org/10.1016/0038-0717(92)90268-3
  44. Muraleedharan, T. R., Leela, I. and Venkobachar, C. 1991. Biosorption: An attractive alternative for metal removal and recovery. Current Sci. 61: 379-385
  45. Ozer, A. and Ozer, D. 2003. Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazardous Mater. 100: 219-229 https://doi.org/10.1016/S0304-3894(03)00109-2
  46. Podgorskii, V. S., Kasatkina, T. P. and Lozovaia, O. G. 2004. Yeasts--biosorbents of heavy metals. Mikrobiol. Z. 66: 91-103
  47. Ross, I. S. and Townley, C. C. 1986. The uptake of heavy metals by filamentous fungi. Pp 49-57. In: H. H. Eccles and S. Hunt, Eds., Immobilization of Ions by Biosorption, Ellis Horwood, Chichester, UK
  48. Tobin, J. M., Cooper, D. G. and Neufeld, R. J. 1984. Uptake of metal ions by Rhizopus arrhizus. Appl. Environ. Microbiol. 47: 821-824
  49. Tobin, J. M., White, C. and Gadd, G M. 1994. Metal accumulation by fungi: applications in environmental biotechnology. J Ind Microbiol. 13: 126-130 https://doi.org/10.1007/BF01584110
  50. Tsezos, M. and Velosky, B. 1981. Biosorption of uranium and thorium. Biotechnol. Bioeng. 23: 583-586 https://doi.org/10.1002/bit.260230309
  51. Tsezos, M. and Velosky, B. 1982a. The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng. 29: 385-401
  52. Tsezos, M. and Velosky, B. 1982b. The mechanism of thorium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng. 29: 955-969
  53. Veglio, F. and Beolchini, F. 1997. Removal of metals by biosorption: a review. Hydrometallurgy 44: 301-316 https://doi.org/10.1016/S0304-386X(96)00059-X
  54. Volesky, B. 1990. Removal and recovery of heavy metals by biosorption. Pp 7-43 In: Volesky B. ed. Biosorption of Heavy Metals. CRC Press, Boca Raton, Florida
  55. Volesky, B. and Holan, Z. R. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11: 235-250 https://doi.org/10.1021/bp00033a001
  56. Volesky, B. and May-Phillips, H. A. 1995. Biosorption of heavy metals by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 42: 797-806 https://doi.org/10.1007/BF00171964
  57. Willoughby, L. G. and Pickering, A. D. 1977. Viable Saprolegniaceae spores on the epidermis of the salmonid fish Salmo trutta and Salvelinus alpinus. Trans. Br. Mycol. Soc. 68: 91-95 https://doi.org/10.1016/S0007-1536(77)80157-5
  58. Wu, J. and Li, Q. B. 2002. Biosorption of lead by Phanerochaete chrysosporium in the form of pellets. J Environ. Sci. (China) 14: 108-114
  59. Xinjiao, D. 2006. Biosorption of $Cu^{+2}$ from aqueous solutions by pretreated Cladosporium sp. J Environ. Biol. 27: 639-643
  60. Yan, G. and Viraraghavan, T. 2000. Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water SA 26: 119-123
  61. Yan, G. and Viraraghavan, T. 2003. Heavy metal removal from aqueous solution by fungus Mucor rouxii. Water Res. 37: 4486-4496 https://doi.org/10.1016/S0043-1354(03)00409-3
  62. Yang, Q., Wang, J. L. and Zing, Z. 2005. Biosorption of cadmium by fungal biomass of Aspergillus niger. Biomed Environ. Sci. 18: 141-145
  63. Yetis, U., Dolek, A., Dilek, F. B. and Ozcengiz, G. 2000. The removal of Pb (II) by Phanerochaete chrysosporium. Water Res. 34: 4090-4100 https://doi.org/10.1016/S0043-1354(00)00155-X
  64. Zhang, L., Zhao, L., Yu, Y. and Chen, C. 1998. Removal of lead from aqueous solution by non-living Rhizopus nigricans. Water Res. 32: 1437-1444 https://doi.org/10.1016/S0043-1354(97)00348-5

Cited by

  1. Exploring Bioaccumulation Efficacy of Trichoderma viride: An Alternative Bioremediation of Cadmium and Lead vol.35, pp.4, 2012, https://doi.org/10.1007/s40009-012-0056-4
  2. Influence of Dyes on Metal Removal: a Study Using Live and Dead Cells of Penicillium simplicissimum in Single-Metal and Dye-Metal Mixtures vol.229, pp.8, 2018, https://doi.org/10.1007/s11270-018-3931-x