References
- Addour, L., Belhocine, D., Boudries, N., Comeau, Y., Pauss, A. and Mameri, N. 1999. Zinc uptake by Streptomyces rimosus biomass using a packed-bed column. J Chem. Technol. Biotechnol. 74: 1089-1095 https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1089::AID-JCTB143>3.0.CO;2-0
- Akar, T., Cabuk, A., Tunali, S. and Yamac, M. 2006. Biosorption potential of the macro fungus Ganoderma carnosum for removal of lead (II) ions from aqueous solutions. J Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 41: 2587-2606 https://doi.org/10.1080/10934520600927989
- Ali, E. H. 2007. Biodiversity of zoosporic fungi in polluted water drainages across Niles' Delta region, Lower Egypt. Acta Mycologica 42: in press
-
Arica, M. Y., Bayramoglu, G, Yilmaz, M., Bektas, S. and Gene, O. 2004. Biosorption of
$Hg^{2+}$ ,$Cd^{2+}$ , and$Zn^{2+}$ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. J Hazardous Mater. 109: 191-209 https://doi.org/10.1016/j.jhazmat.2004.03.017 - Atkinson, B. W., Bux, F. and Kasan, H. C. 1998. Consideration for application of biosorption technology to remediate metalcontaminated industrial effluents. Water SA 24: 129-135
- Babich, H. and Stotzky, G. 1979. Abiotic factors affecting the toxicity of lead to fungi. Appl. Environ. Microbiol. 38: 506-513
- Babich, H. and Stotzky, G. 1982. Nickel toxicity to fungi: influence of environmental factors. Ecotoxicol Environ. Saf. 6: 577-589 https://doi.org/10.1016/0147-6513(82)90039-2
- Bayramoglu, G., Bektas, S. and Arica, M. Y. 2003. Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazardous Mater. 101: 285-300 https://doi.org/10.1016/S0304-3894(03)00178-X
- Bolton, H. and Gorby, Y. A. 1995. An overview of the bioremediation of metal-contaminated industrial effluents using waste sludges. Water Sci. Technol. 34: 9-15
- Brady, D., Stoll, A. and Duncan, J. R. 1994. Biosorption of heavy metals cations by non-viable yeast biomass. Environ. Technol 15: 429-438 https://doi.org/10.1080/09593339409385447
-
Cabuk, A., Elhan, S., Filik, C. and Caleskan, F. 2005.
$Pb^{+2}$ biosorption by pretreated fungal biomass. Turk. J Biol. 29: 23-28 - Chen, J. P. and Yiacaumi, S. 1997. Biosorption of metal ions from aqueous solutions. Sep. Sci. Technol. 32: 51-69 https://doi.org/10.1080/01496399708003186
- Churchill, S. A., Walters, J. V. and Churchill, P. F. 1995. Sorption of heavy metals by prepared bacterial cell surfaces. J Environ. Eng. 121: 706-711 https://doi.org/10.1061/(ASCE)0733-9372(1995)121:10(706)
- Errasquin, E. L. and Vazquez, C. 2003. Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50: 137-143 https://doi.org/10.1016/S0045-6535(02)00485-X
- Fourest, E., Canal, C. and Roux, J. C. 1994. Improvement of heavy metal biosorption by mycelial dead biomass (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenun): pH control and cationic activation. FEMS Microbiol Rev. 14: 325-332 https://doi.org/10.1111/j.1574-6976.1994.tb00106.x
- Gadd, G. M. 1990. Heavy metal accumulation by bacteria and other microorganisms. Experientia 46: 834-839 https://doi.org/10.1007/BF01935534
- Gadd, G. M. 1992. Microbial control of heavy metal pollution. In: Fry, J. C., Gadd, G. M., Herbert, R. A., Jones, C. W. and Watson-Craik, I. A. Eds., Microbial control of pollution, Cambridge University Press, Cambridge
- Gadd, G. M. 1993. Interactions of fungi with toxic metals. New Phytol. 124: 25-60 https://doi.org/10.1111/j.1469-8137.1993.tb03796.x
- Galli, E., Mario, F. Di., Rapana, P., Lorenzoni, P. and Angelini, M. 2003. Copper biosorption by Auricularia polytricha. Lett. Appl. Microbiol. 37: 133-137 https://doi.org/10.1046/j.1472-765X.2003.01354.x
- Galun, M., Keller, P., Malki, D., Feldstein, H., Galun, E., Siegel, S. and Siegel, B. 1983 a. Recovery of uranium (VI) from solution using precultured Penicillium biomass. Water Air Soil Pollut. 20: 221-232 https://doi.org/10.1007/BF00279632
- Galun, M., Keller, P., Feldstein, H., Galun, E., Siegel, S. and Siegel, B. 1983b. Recovery of uranium (VI) from solution using fungal II. Release from uranium-loaded Penicillium biomass. Water Air Soil Pollut. 20: 277-285
- Galun, M., Galun, E., Siegel, B. Z., Keller, P., Lehr, H. and Siegel, S. M. 1987. Removal of metal ions from aqueous solutions by Penicillium biomass: Kinetic and uptake parameters. Water Air Soil Pollut. 33: 359-371 https://doi.org/10.1007/BF00294204
- Garcia-Toledo, A., Babich, H. and Stotzky, G. 1985. Training of Rhizopus stolonifer and Cunninghamella blakesleeana to copper: co-tolerance to cadmium, cobalt, nickel and lead. Can. J Microbiol. 31: 485-492 https://doi.org/10.1139/m85-090
- Gardea-Torresdey, J. L., Cano-Aguilera, I., Webb, R., Tiemann, K. J. and Gutierrez-Corona, F. 1996. Copper adsorption by inactivated cells of Mucor rouxii: effect of esterification of carboxyl groups. J Hazardous Mater. 48: 171-180 https://doi.org/10.1016/0304-3894(95)00148-4
- Gomes, N. C. M., Mendonca-Hagler, L. C. S. and Savaidis, I. 1998. Metal Biorremediation by Microorganisms. Rev. Microbiol. 29: 85-92
- Guibal, E., Roulph, C. and Leclourec, P. 1992. Uranium biosorption by the filamentous fungus Mucor miehei, pH effect on mechanisms and performance of uptake. Water Res. 26: 1139-1145 https://doi.org/10.1016/0043-1354(92)90151-S
- Huang, C. and Huang, C. P. 1996. Application of Aspergillus oryzae and Rhizopus oryzae for Cu (IT) removal. Water Res. 30: 1985-1990 https://doi.org/10.1016/0043-1354(96)00020-6
- Huang, C. P., Westman, D., Quirk, K. and Huang, J. P. 1988. The removal of cadmium (II) from dilute aqueous solutions by fungal adsorbent. Water Sci. Technol. 20: 369-376 https://doi.org/10.2166/wst.1988.0308
- Huang, P., Huang, C. P. and Morehart, A. L. 1991. Proton competition in Cu (II) adsorption by fungal mycelia. Water Res. 25: 1365-1375 https://doi.org/10.1016/0043-1354(91)90115-7
- Hughes, M. N. and Poole, R. K. 1989. Metals and microorganisms, London: Chapman & Hall; p. 10
- Junior, L. M. B., Macedo, G. R., Duarte, M. M. L., Silva, E. P. and Lobato, A. K. 2003. Biosorption of cadmium using the fungus Aspergillus niger. Braz. J Chem. Eng. 20: 53-61
- Kapoor, A. and Viraraghavan, T. 1998. Biosorption of heavy metals on Aspergillus niger: Effect of pretreatment. Bioresource Technol. 63: 109-113 https://doi.org/10.1016/S0960-8524(97)00118-1
- Kapoor, A., Viraraghavan, T. and Cullimore, D. R. 1999. Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technol. 70: 95-104 https://doi.org/10.1016/S0960-8524(98)00192-8
- Khoo, K. M. and Ting, Y. P. 2001. Biosorption of gold by immobilized fungal biomass. Biochem. Engin. J 8: 51-59 https://doi.org/10.1016/S1369-703X(00)00134-0
- Knorr, D. 1991. Recovery and utilization of chitin and chitosan in food processing waste management. Food Technol. 45: 114-122
- Kratochvil, D. and Volesky, B. 1998. Advances in the biosorption of heavy metals. Trends Biotechnol. 16: 291-300 https://doi.org/10.1016/S0167-7799(98)01218-9
- Kuyucak, N. and Volesky, B. 1988. Biosorbents for recovery of metals from industrial solutions. Biotechnol. Lett. 10: 137-142 https://doi.org/10.1007/BF01024641
- Li, Z. and Yuan, H. 2006. Characterization of cadmium removal by Rhodotorula sp. YII. Appl. Microbiol. Biotechnol. 73: 458-63 https://doi.org/10.1007/s00253-006-0473-8
- Lo, W., Chua, H., Lam, K. H. and Bi, S. P. 1999. A comparative investigation on the biosorption of lead by filamentous fungal biomass. Chemosphere 39: 2723-2736 https://doi.org/10.1016/S0045-6535(99)00206-4
- Macaskie, L. E. and Dean, A. C. R. 1989. Microbial metabolism, desolubilization and deportion of heavy metals: metal uptake by immobilized cells and application to the detoxification of liquid wastes. Biol. Waste Treatment 159-201
- Matheickal, J. T., Yu, Q. and Feltham, J. 1987. Cu(IT) binding by E. radiata biomaterial. Environ. Technol. 18: 25-34
- Mullen, M. D., Wolf, D. C., Ferris, F. G., Beveridge, T. J., Flemming, C. A. and Bailey, G. W. 1989. Bacterial sorption of heavy metals. Appl. Environ. Microbiol. 54: 3143-3149
- Mullen, M. D., Wolf, D. C, Beveridge, T. J. and Bailey, G. W. 1992. Sorption of heavy metals by soil fungi Aspergillus niger and Mucor rouxii. Soil Biol. Biochem. 24: 129-135 https://doi.org/10.1016/0038-0717(92)90268-3
- Muraleedharan, T. R., Leela, I. and Venkobachar, C. 1991. Biosorption: An attractive alternative for metal removal and recovery. Current Sci. 61: 379-385
- Ozer, A. and Ozer, D. 2003. Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazardous Mater. 100: 219-229 https://doi.org/10.1016/S0304-3894(03)00109-2
- Podgorskii, V. S., Kasatkina, T. P. and Lozovaia, O. G. 2004. Yeasts--biosorbents of heavy metals. Mikrobiol. Z. 66: 91-103
- Ross, I. S. and Townley, C. C. 1986. The uptake of heavy metals by filamentous fungi. Pp 49-57. In: H. H. Eccles and S. Hunt, Eds., Immobilization of Ions by Biosorption, Ellis Horwood, Chichester, UK
- Tobin, J. M., Cooper, D. G. and Neufeld, R. J. 1984. Uptake of metal ions by Rhizopus arrhizus. Appl. Environ. Microbiol. 47: 821-824
- Tobin, J. M., White, C. and Gadd, G M. 1994. Metal accumulation by fungi: applications in environmental biotechnology. J Ind Microbiol. 13: 126-130 https://doi.org/10.1007/BF01584110
- Tsezos, M. and Velosky, B. 1981. Biosorption of uranium and thorium. Biotechnol. Bioeng. 23: 583-586 https://doi.org/10.1002/bit.260230309
- Tsezos, M. and Velosky, B. 1982a. The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng. 29: 385-401
- Tsezos, M. and Velosky, B. 1982b. The mechanism of thorium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng. 29: 955-969
- Veglio, F. and Beolchini, F. 1997. Removal of metals by biosorption: a review. Hydrometallurgy 44: 301-316 https://doi.org/10.1016/S0304-386X(96)00059-X
- Volesky, B. 1990. Removal and recovery of heavy metals by biosorption. Pp 7-43 In: Volesky B. ed. Biosorption of Heavy Metals. CRC Press, Boca Raton, Florida
- Volesky, B. and Holan, Z. R. 1995. Biosorption of heavy metals. Biotechnol. Prog. 11: 235-250 https://doi.org/10.1021/bp00033a001
- Volesky, B. and May-Phillips, H. A. 1995. Biosorption of heavy metals by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 42: 797-806 https://doi.org/10.1007/BF00171964
- Willoughby, L. G. and Pickering, A. D. 1977. Viable Saprolegniaceae spores on the epidermis of the salmonid fish Salmo trutta and Salvelinus alpinus. Trans. Br. Mycol. Soc. 68: 91-95 https://doi.org/10.1016/S0007-1536(77)80157-5
- Wu, J. and Li, Q. B. 2002. Biosorption of lead by Phanerochaete chrysosporium in the form of pellets. J Environ. Sci. (China) 14: 108-114
-
Xinjiao, D. 2006. Biosorption of
$Cu^{+2}$ from aqueous solutions by pretreated Cladosporium sp. J Environ. Biol. 27: 639-643 - Yan, G. and Viraraghavan, T. 2000. Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water SA 26: 119-123
- Yan, G. and Viraraghavan, T. 2003. Heavy metal removal from aqueous solution by fungus Mucor rouxii. Water Res. 37: 4486-4496 https://doi.org/10.1016/S0043-1354(03)00409-3
- Yang, Q., Wang, J. L. and Zing, Z. 2005. Biosorption of cadmium by fungal biomass of Aspergillus niger. Biomed Environ. Sci. 18: 141-145
- Yetis, U., Dolek, A., Dilek, F. B. and Ozcengiz, G. 2000. The removal of Pb (II) by Phanerochaete chrysosporium. Water Res. 34: 4090-4100 https://doi.org/10.1016/S0043-1354(00)00155-X
- Zhang, L., Zhao, L., Yu, Y. and Chen, C. 1998. Removal of lead from aqueous solution by non-living Rhizopus nigricans. Water Res. 32: 1437-1444 https://doi.org/10.1016/S0043-1354(97)00348-5
Cited by
- Exploring Bioaccumulation Efficacy of Trichoderma viride: An Alternative Bioremediation of Cadmium and Lead vol.35, pp.4, 2012, https://doi.org/10.1007/s40009-012-0056-4
- Influence of Dyes on Metal Removal: a Study Using Live and Dead Cells of Penicillium simplicissimum in Single-Metal and Dye-Metal Mixtures vol.229, pp.8, 2018, https://doi.org/10.1007/s11270-018-3931-x