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Hexagon-Based Q-Learning Algorithm and Applications

Hyun-Chang Yang, Ho-Duck Kim, Han-Ul Yoon, In-Hun Jang, and Kwee-Bo Sim*

Abstract: This paper presents a hexagon-based Q-leaning algorithm to find a hidden targe:
object with multiple robots. An experimental environment was designed with five small mobile
robots, obstacles, and a target object. Robots went in search of a target object while navigating in
a hallway where obstacles were strategically placed. This experiment employed two control
algorithms: an area-based action making (ABAM) process to determine the next action of the
robots and hexagon-based Q-learning to enhance the area-based action making process.
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1. INTRODUCTION

Currently, robots are coping with tasks in dangerous
fields previously performed by men, such as rescue
missions in buildings damaged by fire or at sites
contaminated by gas, information retrieval from deep
seas or space, and weather analysis in extremely cold
areas like Antarctica. Sometimes, multiple robots are
needed to penetrate especially hard-to-access areas,
such as underground insect nests in order to collect
more reliable and solid data.

Multiple robot control has received much attention
since it offers a new flexible and vigorous way to
control multiple agents. For instance, Parker used the
heuristic approach algorithm for multiple robots and
applied it to cleaning tasks [1]. Ogasawara employed
distributed autonomous robotic systems to control
multiple robots transporting a large object [2].
However, the greater the dependency on
communication in a system is, the more difficult a
system hierarchy becomes. Therefore, this study
proposes an area-based action making (ABAM)
process for instinctive intelligence similar to bee
behavior in an apiary. This in turn, is incorporated
with hexagon-based Q-learning, which is learned
intelligence and helps multiple robots to navigate,

Manuscript received October 11, 2006; revised May 1,
2007 and July 2, 2007, accepted July 30, 2007. Recommended
by Editor Jae Weon Choi. This research was supported by the
Brain Neuroinformatics Research Program by Ministry
Commerce Industry and Energy, Korea.

Hyun-Chang Yang, Ho-Duck Kim, In-Hun Jang, and Kwee-
Bo Sim are with the School of Electrical and Electronics
Engineering, Chung-Ang University, 221, Heukseok-dong,
Dongjak-gu, Seoul 156-756, Korea (e-mails: {hcyang, hoduck,
inhun}@wm.cau.ac.kr, kbsim@cau.ac kr).

Han-Ul Yoon is with the School of Electrical and
Electronics Engineering, the University of Illinois at Urbana
Champaign, Urbana, IL. 61801 USA (e-mail: huyoon@wm.cau.
ac.kr).

* Corresponding author.

avoid collision, and search using their own trajectories.

Reinforcement learning through exploring its
environment actively enables an agent to determine
what the following action should be. During the
exploration of an uncertain state space followed with a
reward, the agent learns what to do by continuum of
its state history and appropriate propagation of
rewards through the state space [3]. This research
focused on Q-learning as a reinforcement learning
technique because Q-learning is a simple way to solve
Markovian action problems with incomplete
information. In addition, an agent can map state-
action pairs onto expected returns based on the action-
value function Q [4]. In addition to this simplicity, Q-
learning can be adapted to the real world. For example,
state space can be harmonized with the physical space
of the real world. An action can be regarded as a
physical robot maneuver. This paper proposes that the
hexagon-based Q-learning can enhance the area-based
action making process so that the learning process can
be better adapted to real world situations.

The organization of this paper is as follows. Section
2 introduces an area-based action making process.
Section 3 presents hexagon-based Q-learning
adaptation. Section 4 introduces the design of a small
mobile robot. Experimental results from the
application of two different searching methods to find
a target object are presented in Section 5. Section 6
presents conclusions.

2. AREA-BASED ACTION MAKING
PROCESS: INSTINCTIVE INTELLIGENCE

2.1. Area-based action making process

Both Distance-based action making (DBAM) and
Area-based action making (ABAM) process are
widely used for determining next action of a robot. In
the DBAM process is referred to as DBAM, a robot
can recognize its surroundings by the distance
between itself and an obstacle. But, in the case of
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(a) DBAM. (b) ABAM.
Fig. 1. Different actions taken under DBAM and
ABAM.

ABAM, a robot uses the circumferential areas for
recognizing its surroundings. The key to the ABAM
process is that it removes uncertainty regarding its
surroundings. It is similar to the behavior-based
direction change in regards to controlling robots [5,6].
Under the ABAM process robots recognize the shape
of their surroundings and then take action, i.e., turn
and move toward the widest guaranteed space. Fig. 1
depicts the different actions in the same situation
under DBAM and ABAM, respectively [7,8]. As you
can infer by their name, DBAM process selects d4
that is the direction of the longest distance from the
robot. Otherwise, ABAM process selects a4 that has
the widest area on the neighborhood.

2.2. The advantage of ABAM over DBAM

Fig. 2 illustrates how a robot can avoid both
obstacles and collisions and estimate its tracking area.
In Fig. 2, the robot is surrounded by 6-obstacles.
Under DBAM, the robot perceives that there is no
obstacle in the southwest direction. Thus, it will try to
proceed toward that direction, which will result in
being struck two obstacles. This scenario is shown in
Fig. 2(a). Under ABAM, however, the robot calculates
the distance between the two obstacle areas and
choose the direction that has maximum distances for
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Fig. 2. Nlustrative example of collision avoidance on
DBAM and ABAM.

next movement. Therefore, the robot changes its
direction accordingly. This scenario is shown in Fig.
2(b).

3. HEXAGON-BASED Q-LEARNING
ALGORITHM

3.1. Q-learning algorithm

Q-learning is a well-known algorithm for
reinforcement learning. It leads an agent to acquire
optimal control strategies from delayed rewards, even
when there is no prior knowledge of the effects of its
actions on the environment [9,10]. The Q-learning
algorithm presented in Table 1 is a possible state or
action, indicates an immediate reward value, and is a
discount factor. The formula to update the table entry
value is:

Q(s,a) “—r+ )/quQ(s La'). 1)

a

Fig. 3 explains the Q-learning algorithm more
clearly. Each grid square represents possible states.
‘R’ stands for a robot or an agent. The values upon the
arrows are values relevant to the state transition.

For example, the value Q(sl,arigh,)=72, Qight

refers to the action that moves ‘R’ to its right [9,11].
If the robot takes action to move right, the value is
updated, where r=0, ¥=0.9 are predetermined

values. The formula is as follows:
O(s1, Apigny) < 1 + 7II}ZaXQ(52,az)
2
« 0 + 0.9max{63,81,100} (2)
az

<« 90.

Table 1. Q-learning algorithm.

Foreach s,a initialize table entry Q(s,a)
Zero Observe the current state s

Continue to infinity

¢ Select action aand execute

¢ Receive immediate reward r

« Observe new state s'

+ Select action

« Update table entry for O(s,a)

s« s'

g Y,
63
|81

[] Bright

Next state: s2

Initial state; 51

Fig. 3. Illustrative example of Q-learning.
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3.2. Hexagon-based Q-learning adaptation

The unique Q-learning type for this robot system
was adapted to enhance the ABAM process. The
adaptation can be performed with a simple and easy
modification, namely, through hexagon-based Q-
learning.

Fig. 4 illustrates an example of hexagon-based Q-
learning. The well-known standard Q-learning method
is based on square state space. But hexagon-based Q-
learning uses the different shape of the state space
from the ordinary square-based state space.

The reason for changing the shape of state space from
a square to a hexagon was that the hexagon is a
polygon that can be expanded infinitely by its
combination. According to this adaptation, the robot
could perform an action in 6-directions and have 6-
table entry Q values. Moreover, the hexagon-based
Q-learning has extra advantages that it has fast
responses and many radius of action. In Fig. 4, the
robot is in the initial state. Now, if the robot decides
that +60 degrees guarantees the widest space after
calculating its 6-areas of surroundings, the action of
the robot would be a4y . After the action is taken, if

Area6' is the widest area, the value of Q(sl 2 d460°)
can be updated using (1) and (2) as

Q(Sl’aright)e Fo+ 7n}zaXQ(52,a'a)
2
<« 0 + 0.9max{Areal’,--, Area6'} (3)
a

<« YVArea0,

where s is a possible state, a is a possible action, »
indicates an immediate reward value, here
predetermined as 0, and 7 is the discount factor
[12,13].

After moving from the initial state to the next state,
immediate reward becomes the difference between the
sum of the total area after action is taken and the sum
of the total area before action is taken. Thus, the
reward is

6 6
r= Z Area; ~ Z Area;, “4)
j=1 i=1

D s
Action to
+60 degree
(Area2)

Initial States : s1 Next States : s2

Fig. 4. Illustrative example of hexagon-based Q-
learning.

Table 2. Hexagon-based Q-learning algorithm.

For each s,a initialize the table entry Q(Saag)

zero calculate 6-areas at the current state s
Do until the task is completed
* Select action ag to the widest area and execute

* Receive immediate reward »

« Observe new state s' If O(s\.ay )is greater
than or equal to O(s,a,)

« Update table entry for O(s,ap)

+ s< s'Otherwise, if O(s',a) )is far less than
O(s,ay)

« Move back to previous state
¢ S¢-5§

where Area; €s, and Area; €s' respectively. The

hexagon-based Q-learning algorithm is presented in
Table 2.

4. DESIGN OF A SMALL MOBILE ROBOT

The robot system, designed in a laboratory, is
consisted of two main micro-controller parts and three
sub-parts. The sub-parts are camera vision, sensor, and
motor. Each sub-part has its own controller in order to
perform its unique function more efficiently. One
main micro-controller part controls three sub-parts to
avoid process collision and make decisions based on
data from its sub-parts. The other main part controls
the Bluetooth module and processes event handling
[14]. Section 4.1 introduces the design and
implementation of three subordinate parts. Two main
parts employed in the hierarchical upper control layer
are presented in Section 4.2.

4.1. Three subordinate parts design and implementa-
tion

1) Object recognition with TMS320LF2407A DSP
controller: This robot used the Movicam II made by
Kyosera, a CCD camera used by SKY cellular phone.
The dimensions are 30%16.4x53.7mm(width> thickness
xheight) and its weight is approximately 12g. The
frame consists of a header, image data, and end maker.
The data from the camera is only used to recognize
object. Fig. 5 shows the camera and the data
components of the frame in detail. When a clock is
applied to the clock-port (port 2), it starts to slowly
send the data rising clock from the header to the end
maker. The data-out port (port 1) of the camera is
attached to a DSP (Digital Signal Processor)
TMS320LF2407A, which is programmed to perform
signal processing. Image data for an entire image is
too large to wait for the end of the process (153,600
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Fig. 5. Connection between camera and DSP (a), data
transfer timing (b).
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Fig. 7. Characteristic curves of motor (left), function-
al block diagram of driving part (right).

Fig. 6. Functional block diagram of sensor part.

byte). Accordingly, the program was optimized to
reduce the image data to within 26,134 bytes. The
connection between the DSP and the camera is shown
in Fig. 5(a). The data transfer diagram is presented in
Fig. 5(b).

2) Six-area calculation using infrared sensor
emitter-detector pair: The robot has six infrared (IR)
sensors to measure the distance between itself and its
surroundings. Each sensor consists of a pair of
emitters and detectors. The emitter is a Kodenshi EL-
1k13, high-power GaAs IR and the detector is an ST-
1kla, high-sensitivity NPN silicon phototransistor.
They are mounted in a durable and hermetically
sealed TO-18 metal package.

The six IR sensors are placed at 60 degrees angles

to one another so they can cover an entire 360 degrees.

To make six IR sensors cover 360 degree, we just
placed each IR sensor at 60 degrees angles to one
another. But we chose each IR sensor with 17 degrees
spec. to avoid interference. An emitter with a narrow
beam angle (about 17 degree) is chosen to avoid
interference. Fig. 6 illustrates the block diagram
showing the arrangement and the area covered by the
SIX Sensors.

3) Maneuver driver with a NMB PG25L-024
stepping motor: NMB PG25L-024 stepping motor is
used as a driving part. Its characteristics are the
following: drive voltage-12V, drive method 2-2 phase
and 0.495° step angle.

Fig. 7 illustrates a torque-frequency-current
characteristic curve and maximum self-operating
frequency of 600pps. The motor driver is comprised
from the serial combination L297 and SLA7024A to
control two motors. Table 3 presents the relationship

o » ———-emiter1-———>C\; . . ] )
o > L2003 ——emiterz—( ) Table 3. Relationship between signals and actions.
- 74LS23B > Darlinto;\ ——emiter )
Decoder > TR :::::“'—’Q » 0x01 — Forward (North)
> o emiee ) * 0x02 — Right 60° (North East)
g;%g - I ¢ 0x03 — Right 120° (South East)
| < d 1 ) » 0x04 — Turn around (South)
| ol tecter? i « 0x05 — Left 120° (South West)
7l Analog < d 4 5 . °
v detecter4 4 0x06 — Left 60° (North West)
) dotoctor® -

between the signals and the actions of robots.

4.2. Two main parts as a hierarchical upper control
layer

1) First main controller for camera, sensors, and
motors: The system is designed so that the main
controller may have little over-head. The functions of
the main controller are as follows: a) controls the
UART Tx/Rx communication between the main
controller and sub-controllers, b) generates the rules
for following actions, c¢) changes the direction d)
operates the camera. The abstract algorithm is
summarized in Table 4.

2) Second main controller for Bluetooth
communication: As the first goal is to send out
multiple robots into an unknown area, a manual
control technique is needed after the robot found the
appropriate trajectory.

Table 4. Algorithm for moving the mobile robot.

+ Initialization

« Wait until all three subordinate parts are ready.
Continue until the given task is complete

* Send the sensor a signal ID.

tReceive directions for the widest area.

» Store the current state and direction.

» Send the motor part the direction.

tMove to the next state.

+ Send the vision part a signal ID.

tReceive the acquired image.

+ Feed the image to direction and robot ID [base_
address}.

tProduce ACL packet format data and send it to a
desktop via Bluetooth communication.

* Run the hexagon-based Q-learning.
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Fig. 8. Prototype robot for remote control test (left),
Bluetooth host module (center bottom), and
control panel (right).
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Fig. 9. ROBOSIM, URIS Laboratory mobile robot
simulator.

Fig. 8 shows the prototype robot and the control
panel that were used for the development of robot
manual control via Bluetooth communication. The
Bluetooth controller first sets up its connected client
module as a Discoverable mode; then, classifies
received data by its packet and stores it in the flash
memory [15].

Fig. 9 shows the interface of a ROBOSIM
simulator that can unify and play the role of a bridge
to connect software simulations under intelligent
algorithms, i.e., Hexagon-Based Q-Leaming, GA
(Genetic Algorithm), ANN(Artificial Neural Network),
XCS(eXtended Classification System), and so on,
with a physical hardware simulation. It can monitor
the situation of each robot by displaying its sight,
trace and position.

5. EXPERIMENTS WITH TWO DIFFERENT
CONTROL METHODS

The task of the robots is a follows: “Find the hidden
object while tracking through an unknown hallway.”
We set up the color of the object as green and that of
5-robots as orange. The object was a stationary robot
having the same shape. It was a located at a hidden
place near the obstacle. The 5-robots, which try to

Fig. 10. Five robots searching for object using
ABAM.

search the object, recognize the object by the object’s
color and shape. The 5-robots will decide whether
they have finished the task by detecting the object
after each action is taken.

First, we applied ABAM to all robots. With the
feature of ABAM, the robots sense their environment
by 6-infrared sensors and calculate 6-area with these
values. When the calculation is done, each robot tries
to move to where the widest area will be guaranteed.
In our 2nd experiment, after the robots started to move,
each rtobot spread out into the environment.
Consequently, the ABAM performed better than
random search. Fig. 10 shows that the two robots,
which are located the right side of the object,
succeeded to complete the task. These two robots are
designated by black arrow in Fig. 10.

Second, we adopted the hexagon-based Q-learning
to ABAM as a modified control method. This method
allowed the robots to reduce the probability of a
wrong judgment and compensated wrong judgment by
reinforcement learning. Each robot tried to search its
own area as in the 2nd experiment, however, it
canceled the decided action if the action caused
negative (or bad) immediate reward value. By using
the hexagon-based Q-learning adaptation to ABAM,
more than 2 robots completed the task during the 10-
trials. The search with hexagon-based Q-learning is
presented in Fig. 11.

The results of our experiment are presented in Fig.
12. With random search, one robot found the object at
the 2nd trial and 6th trial, although these detections
can be considered as just coincidence. Therefore, we
can say the random search has no remarkable meaning.
With ABAM, the robots performed better than with
random search, with the average performance above 1
during the all trial. Finally, with the adaptation of
hexagon-based Q-learning to ABAM, the results were
remarkable. Especially, 3-robots succeeded to find the
object at the 4th, 6th, 8th, 9th, and 10th trial.
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Fig. 11. Five robots searching for object using

hexagon-based Q-learning.
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Fig. 12. Experimental result with two different control
methods.

6. CONCLUSIONS

This paper introduced an area-based action making
(ABAM) process and hexagon-based Q-learning. Five
small mobile robots were used to search for a hidden
object in an unknown location. The results are
presented from the experimental application of two
different control methods under the same conditions.
The area-based action making process and hexagon-
based Q-learning were new ways for robots to search
for an object in an unknown space. This algorithm
also enabled agents to avoid obstacles during their
search. For future research, we first need to clarify the
problem of accessing an object. In other words, if
multiple robots are to carry out a task such as object
transporting or block stacking, they need to recognize
the object first and then proceed to approach it.
Second, these robot systems require improvement so
that the main parts and the subparts adhere more
strongly. In addition, stronger complex algorithms,
such as Bayesian learning or TD (L) methods need to
be adapted. Third, a self-organizing Bluetooth
communication network should be built so that robots

can dynamically communicate with one another even
if one or more robots are lost. Finally, the total system
unification using a ROBOSIM simulator needs to be
refined to obtain better results and offer a stronger
platform for mobile robot research.
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