The Effect of Seedlings Density in Nursery on Biomass Production and Growth Characteristic of Styrax obassia

생육밀도가 쪽동백나무 유묘의 물질생산량과 생장특성에 미치는 영향

  • Choi, Jeong-Ho (Forest Practice Research Center Korea Forest Research Institute) ;
  • Yoo, Se-Kuel (Forest Practice Research Center Korea Forest Research Institute) ;
  • Lee, Soo-Won (Forest Practice Research Center Korea Forest Research Institute) ;
  • Oh, Seok-Gui (Division of Horticulture and Pet Animal-Plant Science, Wonkwang University)
  • 최정호 (국립산림과학원 산림생산기술연구소) ;
  • 유세걸 (국립산림과학원 산림생산기술연구소) ;
  • 이수원 (국립산림과학원 산림생산기술연구소) ;
  • 오석귀 (원광대학교 원예.애완동식물학부)
  • Published : 2007.09.30

Abstract

To provide the basic data essential for developing varieties of broad-leaved tree, the study investigated the utmost growth requirement for the growth characteristic and biomass production in accordance with planting density of Styrax obassia. The planting density of seedling can be a significant factor in contributing growth of seedling for tree growing in general. While growth of tree according to $1m^2$ planting density of Styrax obassia showed an excellent growth in tree height and the root collar diameter from $49no./m^2$, those low planting density showed decreased tendency with tree height growth while increasing the root collar diameter growth. As similar to the growth characteristic, the biomass production showed significant and statistic difference in $49no./m^2$, showing high volume of biomass production which is $3.12{\pm}0.80g$ compare to other processing section and high figure with T/R ratio which is 1.59. The special trait of photosynthetic also showed relatively high photosynthetic rate in $49no./m^2\;and\;64no./m^2$ of Styrax obassia and as the density increase, photosynthetic efficiency decreased. The plant showed stable and physiological planting pattern, displaying the best photosynthetic rate, which was the final metabolism through reserving proper space in the growth and development environment condition. This obstacle of required space essential for growth substantially deteriorated planting and ultimately, it demonstrated lower tendency of photosynthetic rate, which is the highest level of metabolism.

다양한 활엽수 자원의 개발에 필요한 기초자료를 제공하고자 쪽동백나무 유묘의 생육밀도에 따른 물질생산량과 생장특성 등 최적의 생장조건을 조사하였다. 묘목의 생육밀도는 수고생장에 크게 영향을 미치는 중요한 요인이 될 수 있으며, 본 실험 결과 쪽동백나무의 $1m^2$당 생육 밀도에 따른 묘목의 생장은 49본구에서 간장과 근원직경이 우수한 생장량을 보인반면 생육밀도가 낮은 처리구는 근원직경 생장이 증가하면서 간장생장은 떨어지는 경향을 보였다. 물질생산량 또한 생장 특성과 마찬가지로 $1m^2$당 49본구 처리구에서 전체 물질생산량이 통계적으로 유의적인 차이를 보이면서 $3.12{\pm}0.80g$로 다른 처리구보다 높은 물질생산량을 보였고, T/R율에서도 1.59로 나타났다. 생리적 특성으로 광합성률 또한 쪽동백나무의 경우 $1m^2$$49/m^2$ 본구와 $64/m^2$ 본구에서 상대적으로 높은 광합성률을 보였고 밀도가 높아질수록 광합성 효율이 떨어지는 결과를 나타냈다. 이는 생육 환경조건에서 적절한 공간 확보가 궁극적으로 최종 물질대사 작용인 광합성률 변화에서 최적의 상태를 보이면서 생리적으로 안정된 생장형태를 보이는 것으로 판단되며, 적정 공간의 장애가 실질적인 생장저하를 발생시키고, 궁극적으로 물질대사의 최고 단계인 광합성효율 또한 낮아지는 경향을 나타냈다.

Keywords

References

  1. Akkin, S. 2005. Fifth year performance of morphologically graded Cedrus libani seedlings in the central anatolia region of Turkey. Turk. J. Agri. For. 29:483-49l
  2. Bormann, B.T. and J.C. Gorden. 1984. Stand density effects in young red alder plantations: Productivity, photosynthate partitioning and nitrogen fixation. Ecology 2:394-402
  3. Choi, J.H. 2001. Effects of artificial shade treatment on the growth performances, water relations, and photosynthesis of several tree species. Chungnam university. Korea. 152pp
  4. Chung, S.H., J. W. Kim, and G.S. Lee. 1984. A study on the seed germination and seedling density of Fraxinus mandshruica in nursery. Journal of Korean Forest Society 63 :9-11
  5. Donald, C.M. 1961. Competition for light in crops and pastures, 'Mechanisms of biological competition'. Soc. Exp. Biol. 15:282-313
  6. Goo, G.H., J.S. Choi, and K.S. Youn. 1995. Effects of the seed treatment on field germination and seedling growth in four useful species, Euonymus alatus, Nandina domestica, Thea sinensis and Zanthoxylum piperitum. Journal of Korean Forest Society 84(1):87-96
  7. Goo, G.H., K.Y. Lee, K.S. Youn, and C.K, Lee. 1997. Seed germination, seedling growth and optimal seedling density of Phellodendron amurense Rupr. in nursery. Journal of Korean Forest Society 86(4):443-449
  8. Iwaki, H. 1959. The influence of density on the dry matter production of Fagopirum esculentum. Japan. J. Bot. 16:210-226
  9. Jin, H.S. 1972. Studies on the competition-density effect of some higher plants. Journal of botanical society 15(2):7-19
  10. Kramer. P.J. and T.T. Kozlowski. 1979. Physiology of woody plants. Academic press. New York. 811pp
  11. Kuroiwa, S. 1960. Intraspecific competition in artificial sun flowers communities. Bot. Mag(Tokyo). 73:300-309
  12. Lee, C.B. 1989. Illustrated flora of Korea. Hyangmunsa. 990pp
  13. Ma, S.K. 1976. Density effects on the size of 2-1 korean pine and 1-1 jack pine nursery stock. Journal of Korean Forest Society 32:1-8
  14. Park, B.S., J.K. Yoon, M.B. Lee, Y.H. Jeomg, S.K. Park, K.H. Noh, D.K. Kim, and D.R. Choi. 1984. Studies on standard size of seedling to raise healthy out planting stocks. For. Rep. For. Res. Inst. Korea 31:20-30
  15. Per, S. and J.R. Karl. 2000. Soil strength and soil pore characteristics for direct drilled and ploughed soils. Soil & Tillage Research 57:69-82 https://doi.org/10.1016/S0167-1987(00)00149-5
  16. Sarvas, M. 2001. The influence of physiological activity on the rate of electrolyte leakage from Beech and Oak planting stock. Journal of Forest Science 47:174-180
  17. SAS Institute. 1996. SAS/STAT software: Changes and enhancements through release 6.11. SAS Institute, Cary, NC. 1104pp
  18. Veiko U., V. Aivo, T. Hardi, and T. Amo. 2007. Above-ground biomass production and nutrient accumulation in young stands of silver birch on abandoned agricultural land. Biomass and Bioenergy 31: 195-204 https://doi.org/10.1016/j.biombioe.2006.08.003
  19. W.A. Williams. 1963. Competition for light between annual species of Trifolium during the vegetative phase. Ecol. 44:475-485 https://doi.org/10.2307/1932526
  20. Woo, S.Y., K.W. Kwon., J.C. Lee., J.H. Choi, and B.S. Kang. 2003. Recovery of net photosynthetic rate after $SO_{2}$ fumigation in Quercus accutissima, Pinus densiflora, Populus alba x P. glandulosa, and Acanthopanax sessiliflorus. Photosynthetica 41(2):319-320 https://doi.org/10.1023/B:PHOT.0000011971.85208.8f