Study for Mechanical Properties of Electroless (Ni/Au) Plated Monodisperse Polymer Particles

무전해 (니켈/금) 도금 처리된 단분산 가교고분자 미립자의 기계적 물성 연구

  • 김동옥 (한화석유화학 중앙연구소) ;
  • 진정희 (한화석유화학 중앙연구소) ;
  • 손원일 (한화석유화학 중앙연구소) ;
  • 오석헌 (한화석유화학 중앙연구소)
  • Published : 2007.09.30

Abstract

Monodisperse polymer particles were prepared via one- step seeded polymerization using PMMA as seed particles, and HDDA, triEGDMA or EGDMA as crosslinking monomer. For the study, the effects of 1) the ratio of the absorbed monomer to the seed polymer particles (swelling ratio), 2) the characteristics of crosslinking monomer, 3) electroless Ni plating, and 4) electroless Au Plating on the variation of mechanical properties of polymer particles, such as recovery rate, K-values, breaking strength and breaking displacement were investigated by using MCT (micro compression test). It was observed that swelling ratio of polymer particles influenced only on breaking strength of polymer Particles, while electroless plating did on recovery rate, K-values ($K_{10}\;and\;K_{20}$) and breaking strength of electroless plated polymer particles. However, breaking displacement and K-values ($K_{30}{\sim}K_{50}$) were more or less insensitive to electroless plating.

무유화제중합으로 제조된 폴리(메틸 메타크릴레이트) (PMMA) 시드 고분자 미립자에 가교단량체인 HDDA (1,6-hexanediol diacrylate), triEGDMA [tri(ethylene glycol) dimethacrylate] 또는 triEGDMA와 EGDMA (ethylene glycol dimethacrylate)의 혼합액을 흡수시키고, 이를 중합하여 단분산 가교고분자 미립자를 제조할 시 1) 흡수된 가교단량체와 시드 고분자 미립자의 중량비(흡수율) 변화, 2) 가교단량체의 변화, 3) 무전해 니켈도금 및 4) 무전해 (니켈/금)도금에 따른 단분산 가교고분자 미립자의 기계적 물성인 탄성복원율, 압축탄성률, 파괴강도 및 파괴변형률의 변화를 MCT(micro compression test)를 사용하여 측정하였다. 이번 연구를 통해 가교단량체의 흡수율 증가는 가교고분자 미립자의 파괴강도에만 큰 영향을 미쳤으나, 가교고분자 미립자의 무전해 도금은 도금분체의 탄성복원율 및 파괴강도는 감소시키나, 파괴변형률의 경우에는 거의 영향을 미치지 않으며, 압축탄성률의 경우는 $K_{10}$$K_{20}$는 크게 증가시키나, $K_{30}$ 이후에는 거의 영향을 미치지 못함을 알 수 있었다.

Keywords

References

  1. I. Watanabe, T. Fujinawa, M. Arifuku, M. Fujii, and Y. Gotoh, 9th Int'l Symposium on Advanced Packing Materials, 2004
  2. R. Joshi, Microelectr. J., 29, 343 (1998) https://doi.org/10.1016/S0026-2692(97)00071-2
  3. S. Chang, J. Jou, A. Hsieh, T. Chen, C. Chang, Y. Wang, and C. Hung, Microelectron. Reliab., 41, 2001 (2001) https://doi.org/10.1016/S0026-2714(01)00221-9
  4. M. Rizvi, Y. Chan, and A. Sharif, Solder. Surf. Mt. Tech., 17, 40 (2005)
  5. G. Sarkar, S. Mridha, T. Chong, W. Yuen, and S. Kwan, J. Mater. Proc. Tech., 89-90, 484 (1999)
  6. Y. Chan and D. Luk, Microelectron. Reliab., 42, 1185 (2002) https://doi.org/10.1016/S0026-2714(02)00079-3
  7. Y. Chan and D. Luk, Microeiectron. Reliab., 42, 1195 (2002) https://doi.org/10.1016/S0026-2714(02)00089-6
  8. Y. Wu, M. Alam, Y. Chan, and B. Wu, Microelectron. Reliab., 44, 295 (2004) https://doi.org/10.1016/S0026-2714(03)00214-2
  9. A. Seppala and E. Ristolainen, Microelectron. Retisb.. 44, 639 (2004) https://doi.org/10.1016/j.microrel.2003.07.003
  10. M. Uddin, M. Alam, Y. Chan, and H. Chan, Microelectron. Rehab., 44, 505 (2004) https://doi.org/10.1016/S0026-2714(03)00185-9
  11. J. M. Goward, D. C. Whalley, and D. J. Williams, Microelectr. Int., 37, 55 (1995)
  12. D. C. Whalley, S. H. Mannan, and D. J. Williams, Assembly A utom., 17, 66 (1997) https://doi.org/10.1108/01445159710163481
  13. C. N. Oguibe, S. H. Mannan, D. C. Whalley, and D. J. Williams, IEEE T. Compon. Pack B, 21, 235 (1998)
  14. K. Saiuchi, M. Kohara, K. Yamada, and K. Kanki, US Patent 5,486,941 (1996)
  15. K. Saiuchi, M. Kohara, K. Yamada, and K. Kanki, US Patent 5,615,031 (1997)
  16. J. K. Park and P. M. Chung, Korea Patent 10-2004-002183 (2004)
  17. D. O. Kim, J. H. Jin, W. I. Shon, and S. H. Oh, Polymer(Korea), 30, 332 (2006)
  18. D. O. Kim, W. I. Shon, J. H. Jin, and S. H. Oh, Polymer (Korea), 31, 184 (2007)
  19. C. D. Iacovangelo, Plating & Surface Finishing, Sept., p.77 (1995)
  20. K. Hagiwara, J. Watanabe, and H. Honma, Plating & Surface Fjnishing, April, p.74 (1997)
  21. I. Motizuki, K. Izawa, J. Watanabe, and H. Honma, Trans. IMF, 77, 41 (1997)