DOI QR코드

DOI QR Code

XPS study of NiO Growth on Ag(100)

Ag(001)에 성장된 NiO 극초박막의 화학 결함 연구

  • Yang, Seol-Un (Division of Natural Science, Sookmyung Women's University) ;
  • Seong, Shi-Jin (Division of Natural Science, Sookmyung Women's University) ;
  • Kim, J.S. (Division of Natural Science, Sookmyung Women's University) ;
  • Hwang, Han-Na (Pohang Acceleration Laboratory) ;
  • Hwang, C.C. (Pohang Acceleration Laboratory) ;
  • Chang, Young J. (Department of Physics, Seoul National University) ;
  • Park, Soo-Hyon (Department of Physics, Seoul National University) ;
  • Min, H.G. (Department of Physics, Hong Ik University)
  • 양설운 (숙명여자대학교 자연과학부 물리학과) ;
  • 성시진 (숙명여자대학교 자연과학부 물리학과) ;
  • 김재성 (숙명여자대학교 자연과학부 물리학과) ;
  • 황한나 (포항 가속기 연구소) ;
  • 황찬국 (포항 가속기 연구소) ;
  • 장영준 (서울대학교 물리학부) ;
  • 박수현 (서울대학교 물리학부) ;
  • 민항기 (홍익대학교 물리학부)
  • Published : 2007.09.30

Abstract

We have researched the chemical defects of NiO ultrathin films grown on Ag(001) by x-ray photoelectron spectroscopy. In particular, O 1s and Ni 2p spectra were analyzed consistently with control film thickness, $O_2\;and\;H_2O$ partial pressure and substrate temperature. As a result, we could identify each chemical defect. In addition, we suggest the optimum growth condition to minimize the defect density.

NiO 극초박막을 Ag(001) 단결정 위에 성장하는 과정에서 발생하는 화학 결함들을 X선 광전자 분광법을 이용하여 연구하였다. 특히 박막 두께, 산소 분압, 물 분압, 기판 온도 등을 잘 제어한 성장 환경에서 얻어진 O 1s, Ni 2p 스펙트라의 분석을 통하여 NiO 극초박막 성장 시 형성되는 화학 결함들의 정체를 일관성 있게 밝혀내었다. 이를 통하여 결함 밀도를 최소화 할 수 있는 최적의 성장 조건을 제안할 수 있게 되었다.

Keywords

References

  1. S. Altieri, L. H. Tjeng, F. C. Voogt, T. Hibma and G. A. Sawatzky, Phys. Rev. B 59, R2517 (1999) https://doi.org/10.1103/PhysRevB.59.R2517
  2. V. E. Henrich and P.A. Cox, The Surface Science of Metal Oxides, (Cambridge University Press, Cambridge, 1994)
  3. H.-J. Freund, Faraday Discuss. 114, 1 (1999) https://doi.org/10.1039/a907182b
  4. C. Noguera, Physics and Chemistry at Oxide Surfaces, (Cambridge University Press, Cambridge, 1996)
  5. T. Seto, K. Koga, H. Akinaga, F. Takano, K. Sakiyama, M. Hirasawa and T. Orii, Appl. Phys. A 79, 1165 (2004) https://doi.org/10.1007/s00339-004-2696-9
  6. D. G. Hwang, C. M. Park and S. S. Lee, J. Magn. Magn. Mater. 186, 265 (1998) https://doi.org/10.1016/S0304-8853(98)00089-4
  7. H.-J. Freund, H. Kuhlenbeck and V. Staemmler, Rep. Prog. Phys. 59, 283-347 (1996) https://doi.org/10.1088/0034-4885/59/3/001
  8. D. T. Dekadjevi, a. Suvorova, S. Pogossian, D. Spenato and J. Ben Youssef, Phys. Rev. B 74, 100402 (2006) https://doi.org/10.1103/PhysRevB.74.100402
  9. J. M. McKay and V. E. Henrich, Phys. Rev. B 32, 6764 (1985) https://doi.org/10.1103/PhysRevB.32.6764
  10. G. Lee and S.-J. Oh, Phys. Rev. B 43, 14674 (1991) https://doi.org/10.1103/PhysRevB.43.14674
  11. G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 53, 2339 (1984) https://doi.org/10.1103/PhysRevLett.53.2339
  12. P. Luches, M. Liberati and S. Valeri, Surf. Sci. 532- 535, 409 (2003)
  13. H. Ouyang, K. -W. Lin, C. -C. Liu, S. -C. Lo, Y. -M. Tzeng, Z. -Y. Guo and J. van Lierop, Phys. Rev. Lett. 98, 097204 (2007) https://doi.org/10.1103/PhysRevLett.98.097204
  14. M. Caffio, B. Cortigiani, G. Rovida, A. Atrei, and C. Giovanardi, A. di Bona and S. Valeri, Surf. Sci. 531, 368 (2003) https://doi.org/10.1016/S0039-6028(03)00544-2
  15. P. Luches, S. Altieri, C. Giovanardi, T.S. Moia, S. Valeri, F. Bruno, L. Floreano, A. Morgante, A. Santaniello, A. Verdini, R. Gotter and T. Hibma, Thin Solid films 400, 139 (2001) https://doi.org/10.1016/S0040-6090(01)01496-1
  16. A. P. Grosvenor, M. C. Biesinger, R. St. C. Smart and N. S. McIntyre, Surf. Sci. 600, 1771 (2006) https://doi.org/10.1016/j.susc.2006.01.041
  17. A. F. Carley, S. D. Jackson, J. N. O'Shea, and M. W. Robert, Phys. Chem. Chem. Phys. 2, 274 (2001)
  18. J. C. de Jesus, J. Carrazza, P. Pereira and F. Zaera, Surf. Sci. 397, 34 (1998) https://doi.org/10.1016/S0039-6028(97)00704-8
  19. St. Uhlenbrock, Chr. Scharfschwerdt, M. Neumann, G. Illing, and H.-J. Freund, J. Phys.: Condens. Matter 4, 7973 (1992) https://doi.org/10.1088/0953-8984/4/40/009
  20. J. Wollschlager, D. Erdos, H. Goldbach, R. Hopken, and K. M. Schroder, Thin Solid films 400, 1 (2001) https://doi.org/10.1016/S0040-6090(01)01482-1
  21. Y. J. Chang, S. H. Park. and T. W. Noh. (unpublished.)
  22. Y. S. Kim et al. (unpublished.)
  23. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, W. Jo, Nature, 401, 682 (1999) https://doi.org/10.1038/44352
  24. M. Caffio, B. Cortigiani, G. Rovida, A. Atrei, and C. Giovanardi, J. Phys. Chem. B 108, 9919 (2004) https://doi.org/10.1021/jp037805o
  25. FITT program, http://www.gtk.org
  26. F. B. de Mongeot, A. Cupolillo, U. Valbusa and M. Rocca, J. Chem. Phys. 106, 9297 (1997) https://doi.org/10.1063/1.474041
  27. S. Messerli, S. Schintke, K. Morgenstern, J. Nieminen and W. -D. Schneider, Chem. Phys. Lett. 328, 330 (2000) https://doi.org/10.1016/S0009-2614(00)00951-9
  28. M. Gajdo, A. Eichler and J. Hafner, Surf. Sci. 531, 272 (2003) https://doi.org/10.1016/S0039-6028(03)00514-4
  29. I. Costina, M. Schmid, H. Schiechl, M. Gajdos, A. Stierle, S. Kumaragurubaran, J. Hafner, H. Dosch and P. Varga, Surf. Sci. 600, 617 (2006) https://doi.org/10.1016/j.susc.2005.11.020
  30. H. P. Noh, T. Hashizume, D. Jeon, Y. Kuk, H. W. Pickering and T. Sakurai, Phys. Rev. B 50, 2735 (1997) https://doi.org/10.1103/PhysRevB.50.2735
  31. A. van Veenendaal and G. A. Sawatzky, Phys. Rev. Lett. 70, 2459 (1993) https://doi.org/10.1103/PhysRevLett.70.2459
  32. D. Alders, F. C. Voogt, T. Hibma and G. A. Sawatzky, Phys. Rev. B 54, 7716 (1996) https://doi.org/10.1103/PhysRevB.54.7716
  33. S. Altieri, L. H. Tjeng, A. Tanaka and G. A. Sawatzky, Phys. Rev. B 61, 13403 (2001) https://doi.org/10.1103/PhysRevB.61.13403
  34. A. Galtayries and J. Grimblot, J. Electron Spectrosc. Relat. Phenom. 98-99, 267 (1999)
  35. K. S. Lee, S. H. Kim, H. G. Min, J. Seo and J. –S. Kim, Surf. Sci. 377-379, 918 (1997)
  36. C. N. R. Rao, V. Vijayakrishnan, G. U. Kulkarni and M. K. Rajumon, Appl. Surf. Sci. 84, 285 (1995) https://doi.org/10.1016/0169-4332(94)00548-6
  37. W. -S. Yoon, J. Hanson, J. McBreen and X. -Q. Yang, Electrochem. Commun. 8, 859 (2006) https://doi.org/10.1016/j.elecom.2006.03.030
  38. G. U. Kulkarni, C. N. R. Rao and M. W. Roberts, Langmuir 11, 2572 (1995) https://doi.org/10.1021/la00007a041
  39. N.S. McIntyre, and M. G. Cook, Anal. Chem. 47, 2208 (1975) https://doi.org/10.1021/ac60363a034
  40. K. T. Ng, and D. M. Hercules, J. Phys. Chem. 80, 2094 (1976) https://doi.org/10.1021/j100560a009
  41. P. S. Aggarwal and A. Goswami, J. Phys. Chem. 65, 2105 (1961)
  42. M. A. Henderson, Surf. Sci. Rep. 46, 1 (2002) https://doi.org/10.1016/S0167-5729(01)00020-6
  43. S. – J. Seong, J. – S. Kim. (Unpublished.)