Research on Application of Spatial Statistics for Exploring Spatio-Temporal Changes in Patterns of Commercial Landuse

상업적 토지이용 패턴의 시공간 변화 탐색을 위한 공간통계 기법 적용 연구

  • Shin, Jung-Yeop (Department of Geography Education, Seoul National University) ;
  • Lee, Gyoung-Ju (Department of Geography, State University of New York at Buffalo)
  • 신정엽 (서울대학교 지리교육과) ;
  • 이경주 (뉴욕주립대(버팔로) 지리학과)
  • Published : 2007.09.30

Abstract

Lots of geographic phenomena have dynamic spatial patterns with time changes, and there have been lots of researches on exploring these dynamic spatial patterns. However, most of these researches focused on the static pattern analysis in a given period, rather than dealing with dynamic changes in the spatial pattern over time with the continual or cumulative perspective. For this reason, investigation of the inertia of spatial process in terms of temporal changes is needed. From this background, the purpose of this paper is to propose the methodology to explore the changes in spatial pattern cumulatively by considering the inertia of the spatial statistics over time, and to apply it to the case study That is, we introduce the new spatial statistic, and produce the z-values of the statistic using Monte Carlo Simulation, and then to explore the changes in spatial patterns over time cumulatively. To do this, the method to combine the J statistic with CUSUM statistic for exploring spatial patterns, and to apply it to the changes in the commercial landuse in Erie County, New York State. Through the proposed method for spatio-temporal Patterns, we could explore continual changes effectively in the spatial patterns reflecting the statistics by temporal spot cumulatively.

많은 지리적 현상은 시간 변화에 따라 동적인 공간 패턴을 보이며, 이러한 동적인 공간 패턴을 탐색하기 위한 연구들이 수행되어왔다. 그러나 기존의 많은 연구는 시간의 흐름에 따른 공간 패턴의 변화를 연속 또는 누적 측면에서 다루기보다는 특정 시점이나 기간 동안의 정적인 공간 패턴 분석에 초점을 두고 있다. 따라서 시간 변화 과정에서 수반되는 공간 프로세스의 관성(inertia)을 효과적으로 파악할 필요가 있다. 이러한 측면을 고려하여, 본 연구의 목적은 지리현상의 공간패턴을 탐색하는 새로운 공간통계 탐색방법을 제안하고, 이를 사례연구에 적용하는데 있다. 즉, 새로운 공간통계량을 제안하고, 몬테카를로 시뮬레이션(Monte Carlo Simulation)을 통해 새로운 통계량의 z-값을 산출한 뒤, 시간 변화에 따른 공간 패턴의 변화를 누적 방식으로 탐색하는 방법을 소개하고자 한다. 이를 위해 공간 패턴을 측정하는 J 통계량과 CUSUM 통계량이 결합된 방법을 제안하고, 사례연구로 최근 200년 동안 미국 뉴욕 주의 이리 카운티(Erie County)의 상업적 토지이용의 공간 패턴 변화를 살펴보았다. 이러한 시공간 패턴 변화 탐색 방법을 통하여 새로 구성된 공간통계량을 단위시간마다 누적적으로 반영하여 공간패턴의 연속적인 변화추이의 효과적인 탐색이 가능하였다.

Keywords

References

  1. 권영아, 2006, '최근 한국의 서리 현상의 공간 분포와 시계 열변화 경향,' 대한지리학회지, 41(3), 361-372
  2. 박기호안재성이양원, 2005, '시공간 개인통행자료의 지리적 시각화,' 대한지리학회지, 40(3), 310-320
  3. 신정엽, 2004, 'VCEC(Variable Clumping method for Economic Clusters)을 이용한 도시내 경제 클러스터 탐색 방법에 대한 연구,' 지리교육논집, 48, 63- 72
  4. 이민부.김남신.최한성.신근하, 2003, 'GIS와 RS를 이 용한 토지피복 및 식생 분포의 시공간적 변화: 평안북도 서부 지역을 중심으로,' 대한지리학회지, 38(5), 835-848
  5. Anselin, L., 1995, Local indicators of spatial association - LISA, Geographical Analysis, 27, 93-115 https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
  6. Barff, R., 1987, Industrial clustering and the organization of production: a point pattern analysis of manufacturing in Cincinnati, Ohio, Annals of the Association of American Geographers, 77(1), 89- 103 https://doi.org/10.1111/j.1467-8306.1987.tb00147.x
  7. Besag, J. and Diggle, P. J., 1977, Simple Monte Carlo tests for spatial pattern. Applied Statistics, 26(3), 327-333 https://doi.org/10.2307/2346974
  8. Ceccato, V. and Persson, L., 2002, Dynamics of rural areas: an assessment of clusters of employment in Sweden, Journal of Rural Studies, 18, 49-63 https://doi.org/10.1016/S0743-0167(01)00028-6
  9. Choi, Y., 2005, Temporal and spatial variability of heating and cooling degree-days in South Korea, 1973-2002, Journal of the Korean Geographical Society, 40(5), 584-593
  10. Cliff, A. and Ord, J.K., 1981, Spatial Processes: Models and Applications, Pion, London
  11. Cuthbert, A. and Anderson, W., 2002, Using spatial statistics to examine the pattern of urban land development in Halifax-Dartmouth, Professional Geographer, 54(4), 521-532 https://doi.org/10.1111/0033-0124.00347
  12. Findlay, A. and A. Findlay., 1984, A Monte Carlo approach to estimating the significance of segregation. Environment and Planning A, 16, 225-231 https://doi.org/10.1068/a160225
  13. Fotheringham, A. S., Brunsdon, C., and Charlton, M., 2000, Quantitative Geography: Perspectives on Spatial Data Analysis, Sage Publications, London
  14. Getis, A., and Ord, J. K., 1992, The analysis of spatial association by use of distance statistics, Geographical Analysis, 24, 189-206 https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
  15. Hawkins, D. M. and Olwell, D. H., 1998, Cumulative Sum Charts and Charting for Quality Improvement, Springer-Verlag, London
  16. Kim, H-M., 2005, A GIS-based Analysis of spatial patterns of individual accessibility: A critical examination of spatial accessibility measures, Journal of the Korean Geographical Society, 40(5), 514-532
  17. Knox, G., 1964, The detection of space-time interactions. Applied Statistics, 13(1), 25-29 https://doi.org/10.2307/2985220
  18. Lee, G. and Rogerson, P., 2007, Monitoring global spatial statistics, Stochastic Environmental Research and Risk Assessment (SERRA), 21(5), 545-553 https://doi.org/10.1007/s00477-007-0138-x
  19. Manly, B. F. J., 1998, Randomization, Bootstrap and Monte Carlo Methods in Biology, CHAPMAN & HALL
  20. Moran, P., 1948, The interpretation of statistical maps, Journal of the Royal Statistical Society B, 10, 243- 251
  21. Openshaw, S., 1977, A Geographical solution to scale and aggregation problems in region-building, partitionong, and spatial modelling, Transactions of the Institute of British Geographers, 2, 459- 475 https://doi.org/10.2307/622300
  22. Openshaw, S., 1984, The Modifiable Areal Unit Problem: Concepts and Techniques in Modern Geography, 38, Geo Books, Norwich
  23. Openshaw, S. and Taylor, P.J., 1979, A million or so correlation coefficients: three experiments on the modifiable areal unit problem, in Wrigley, N.(ed.), Statistical Applications in the Spatial Sciences, Pion, London, 127-144
  24. Pacheco, A. and Tyrrell, T., 2002, Testing spatial patterns and growth spillover effects in clusters of cities, Journal of Geographic Systems, 4, 275-285 https://doi.org/10.1007/s101090200089
  25. Paci, R. and Usai, S., 1999, Exetrnalities, knowledge spillovers and the spatial distribution of innovation, GeoJournal, 49, 381-390 https://doi.org/10.1023/A:1007192313098
  26. Rogerson, P., 1997, Surveillance systems for monitoring the development of spatial patterns, Statistics in Medicine, 16, 2081-2093 https://doi.org/10.1002/(SICI)1097-0258(19970930)16:18<2081::AID-SIM638>3.0.CO;2-W
  27. Rogerson, P., 2001a, Monitoring point patterns for the development of space-time clusters, Journal of Royal Statistical Society, A, 164, 87-96 https://doi.org/10.1111/1467-985X.00188
  28. Rogerson, P., 2001b, A statistical method for the detection of geographic clustering, Geographical Analysis, 33, 215-227 https://doi.org/10.1111/j.1538-4632.2001.tb00445.x
  29. Rogerson, P., 2006a, Statistical methods for the detection of spatial clustering in case-control data, Statistics in Medicine, 25, 811-823 https://doi.org/10.1002/sim.2426
  30. Rogerson, P., 2006b, Formulas for the design of CUSUM quality control charts, Communications in Statistics: Theory and Methods, 35, 373-383 https://doi.org/10.1080/03610920500440032
  31. Rogerson, P. and Sun, Y., 2001, Spatial monitoring of geographic patterns: an application to crime analysis. Computers, Environment and Urban Systems, 25, 539-556 https://doi.org/10.1016/S0198-9715(00)00030-2
  32. Rogerson, P. and Yamada, I., 2004, Monitoring change in spatial patterns of disease: comparing univariate and multivariate cumulative sum approaches, Statistics in Medicine, 23, 2195- 2214 https://doi.org/10.1002/sim.1806
  33. Shin, J., 2005, The statistically and economically significant clustering method for economic clusters in an urban region, Journal of the Korean Geographical Society, 40(2), 187-201
  34. Siegmund, D. O., 1985, Sequential Analysis: Tests and Confidence Intervals. Springer, New York
  35. Sweeney, S. and Feser, E., 1998, Plant size and clustering of manufacturing activity, Geographic Analysis, 30(1), 45-64