Grain-Size Trend Analysis for Identifying Net Sediment Transport Pathways: Potentials and Limitations

퇴적물 이동경로 식별을 위한 입도경향 분석법의 가능성과 한계

  • Kim, Sung-Hwan (Ecosystem Survey Team, National Institute of Environmental Research) ;
  • Rhew, Ho-Sahng (Department of Geography, Seoul National University) ;
  • Yu, Keun-Bae (Department of Geography, Seoul National University)
  • 김성환 (환경부 국립환경과학원 생태평가과) ;
  • 류호상 (서울대학교 대학원 지리학과) ;
  • 유근배 (서울대학교 지리학과)
  • Published : 2007.09.30

Abstract

Grain-Size Trend Analysis is the methodology to identify net sediment transport pathways, based on the assumption that the movement of sediment from the source to deposit leaves the identifiable spatial pattern of mean, sorting, and skewness of grain size. It can easily be implemented with low cost, so it has great potentials to contribute to geomorphological research, whereas it can also be used inadequately without recognition of its limitations. This research aims to compare three established methods of grain-size trend analysis to search for the adequate way of application, and also suggest the research tasks needed in improving this methodology 1D pathway method can corporate the field experience into analyzing the pathway, provide the useful information of depositional environments through X-distribution, and identify the long-term trend effectively. However, it has disadvantage of the dependence on subjective interpretation, and a relatively coarse temporal scale. Gao-Collins's 2D transport vector method has the objective procedure, has the capability to visualize the transport pattern in 2D format, and to identify the pattern at a finer temporal scale, whereas characteristic distance and semiquantitative filtering are controversial. Le Roux's alternative 2D transport vector method has two improvement of Gao-Collins's in that it expands the empirical rules, considers the gradient of each parameters as well as the order, and has the ability to identify the pattern at a finer temporal scale, while the basic concepts are arbitrary and complicated. The application of grain sire trend analysis requires the selection of adequate method and the design of proper sampling scheme, based on the field knowledge of researcher, the temporal scale of sediment transport pattern targeted, and information needed. Besides, the relationship between the depth of sample and representative temporal scale should be systematically investigated in improving this methodology.

입도경향 분석법은 파이척도로 표현된 평균입도, 분급, 왜도 등 퇴적물 입도조직변수가 퇴적물의 이동경로를 따라 특정한 경향을 보이는 성질을 이용한 퇴적물 이동경로 식별 방법론이다. 적용이 간편하고 저렴하여 지형학 연구에 널리 응용될 수 있는 가능성을 지니고 있으나 방법론상의 한계도 몇 가지 측면에서 지적되고 있어 주의가 필요하다. 이 연구는 McLaren과 Bowles의 1차원 경로분석법, Gao와 Collins, Le Roux의 2차원 이동벡터법 등 현재까지 정립된 입도경향 분석의 대표적인 세 가지 기법을 비교 평가하여 적절한 활용법을 도출하고, 입도경향 분석의 추후 연구과제를 제안한 것이다. McLaren-Bowles의 1차원 경로분석법은 연구자의 현장경험을 분석에 효과적으로 결합시킬 수 있고 X-분포를 통해 퇴적환경에 대한 해석을 제공해주며 장기적인 퇴적물 순이동 패턴을 파악하는데 효과적이나 연구자의 주관적 해석에 의존해야 한다는 점, 식별할 수 있는 시간 해상도가 낮다는 점등이 단점이다. Gao-Collins의 2차원 이동벡터법은 명확한 절차, 2차원적인 시각화, 세밀한 시간 해상도 등이 장점이지만, 임계거리 선정, 잡벡터 제거과정 등이 문제를 유발할 수 있으므로 분석 시 주의를 요한다. 셋째, Le Roux의 2차원 이동벡터법은 확장된 경험규칙과 조직변수 간의 구배를 고려하고 시간해상도도 세밀하지만, 분석개념이 모호하고 복잡하다. 입도경향 분석은 현장에 대한 연구자의 이해도, 조사하고자 하는 퇴적물 순이동 패턴의 시간적 스케일, 초점을 맞추고자 하는 정보 등에 따라 적절한 기법을 선택하고, 거기에 부합되는 시료채취방안을 기획하는 것이 중요하다. 또한 입도경향 분석이 지형학 연구에 기여하기 위해서는 시료채취 깊이, 교란층의 두께 등 시료채취 과정의 요소들과 퇴적물 순이동 패턴이 지시하는 시간스케일 간의 관계가 체계적으로 규명되어야 한다고 판단된다.

Keywords

References

  1. 김성환.류호상, 2007, '낙동강 삼각주연안 사주섬의 지형 변화에 대한 입도경향 분석의 활용도 탐색,' 한국 지역지리학회지, 13(2), 119-128
  2. 성효현${\cdot}$방경화, 2005, '만리포 해빈퇴적물의 동절기 퇴적 환경,' 한국지형학회지, 12(2), 87-98
  3. 신동혁${\cdot}$이희일${\cdot}$한상준${\cdot}$오재경${\cdot}$권수재, 1998, '황해 가로림만 조간대 표층퇴적물의 이동경로,' 한국해양학회지(바다), 3(2), 59-70
  4. 유규철${\cdot}$오재경, 1999, '동해 연안 표층 퇴적물의 이동경로,' 한국해안해양공학회지, 11(1), 50-55
  5. 추용식, 2001, Sediment dynamics and maintenance of processes of linear tidal sand body: Jangan sandbank in the central west coast of Korea, 서울대학교 대학원 박사학위 논문
  6. Asselman, N.E.M., 1999, Grain-size trends used to assess the effective discharge for floodplain sedimentation, River Waal, the Netherlands, Journal of Sedimentary Research, 69(1), 51-61 https://doi.org/10.2110/jsr.69.51
  7. Bartholdy. J., Christiansen, C. and Petersen, J.B.T., 2004, Comparing advantages and disadvantages in the interpretation of grain-size trends described by the log-normal and the log-hyperbolic distribution model, Proceeding of the International Workshop HWK: From Particle Size to Sediment Dynamics, Delmemhost 15-18 April, 2004, 16-22
  8. Chang, Y.H., Scrimshaw, M.D., and Lester, J.N., 2001, A revised Grain-Size Trend Analysis program to define net sediment pathways, Computers and Geosciences, 27, 109-114 https://doi.org/10.1016/S0098-3004(00)00065-0
  9. Cheng, P., Gao, S., and Bokuniewicz, H., 2004, Net sediment transport patterns over the Bohai Strait based on grain size trend analysis, Estuarine, Coastal and Shelf Science, 60, 203-212 https://doi.org/10.1016/j.ecss.2003.12.009
  10. Friedman, G.M., 1961, Distinction between dune, beach, and river sands from their textural characteristics, Journal of Sedimentary Petrology, 31(4), 514-529
  11. Gao, S. and Collins, M., 1992, Net sediment transport patterns inferred from grain size trends based upon definition of ' transport vectors', Sedimentary Geology, 80, 47-60
  12. Gao, S. and Collins, M., 1994a, Net sediment transport patterns inferred from grain-size trends, based upon definition of 'transport vector' - reply, Sedimentary Geology, 90, 157-159 https://doi.org/10.1016/0037-0738(94)90023-X
  13. Gao, S. and Collins, M., 1994b, Analysis of grain size trends, for defining sediment transport pathways in marine environments, Journal of Coastal Research, 10(1), 70-78
  14. Gao, S., Collins, M., Lanckneus, J., de Moor, G., and van Lancker, V., 1994, Grain size trends associated with net sediment transport patterns: an example from the Belgian continental shelf, Marine Geology, 121, 171-185 https://doi.org/10.1016/0025-3227(94)90029-9
  15. Gao. S. and Collins, M., 1991, A critique of the' McLaren Method'for defining sediment transport pathsdiscussion, Journal of Sedimentary Petrology, 61(1), 143-146 https://doi.org/10.1306/D42676A9-2B26-11D7-8648000102C1865D
  16. Hartmann, D. and Flemming, B., 2002, A comparison between log-hyperbolic and modelindependent GSD in sediment trend analysis, Journal of Coastal Research, 18, 592-595
  17. Discussion of: Steven, H. Hill and Patrick McLaren, 2001, A comparison between log-hyperbolic and modelindependent GSD in sediment trend analysis, Journal of Coastal Research, 18, 592-595
  18. Hartmann, D., 2004, From reality to model: the parameterization problem of particle size distributions, Proceeding of the International Workshop HWK: From Particle Size to Sediment Dynamics, Delmemhost 15-18 April, 2004, 65-67
  19. Hill, S.H. and McLaren, P., 2001, A comparison between log-hyperbolic and model-independent grain size distribution in sediment trend analysis, Journal of Coastal Research, 17, 931-935
  20. Hughes, S.A., 2005, Use of Sediment Trend Analysis for Coastal Projects, CHETN-6-40
  21. Klovan, J.E., 1966, The use of factor analysis in determining depositional environments from grain-size distribution, Journal of Sedimentary Petrology, 36(1), 115-125
  22. Krumbein, W.C., 1934, Size-frequency distribution of sediments, Journal of Sedimentary Petrology, 4, 65-77
  23. Krumbein, W.C., 1938, Size-frequency distribution of sediments and the normal phi curve, Journal of Sedimentary Petrology, 8, 84-90
  24. Le Roux, J.P., 1994a, An alternative approach to the identification of net sediment transport paths based on grain-size trends, Sedimentary Geology, 94, 97-107 https://doi.org/10.1016/0037-0738(94)90149-X
  25. Le Roux, J.P., 1994b, A spreadsheet template for determining sediment transport vectors from grain-size parameters, Computers and Geosciences, 20(3), 433-440 https://doi.org/10.1016/0098-3004(94)90051-5
  26. Le Roux, J.P., 1994c, Net sediment transport patterns inferred from grain-size trends, based upon definition of 'transport vectors' - comment, Sedimentary Geology, 90, 153-156 https://doi.org/10.1016/0037-0738(94)90022-1
  27. Le Roux, J.P., O'Brien, R.D., Rios, F., and Cisternas, M., 2002, Analysis of sediment transport paths using grain-size parameters, Computers and Geosciences, 28, 717-721 https://doi.org/10.1016/S0098-3004(01)00074-7
  28. Lucio, P.S., Dupont, H.S., and Bodevan, E.C., 2004, Sediment transport paths in the Waterschelde: One-dimensional alternative to determine sediment trend, Journal of Coastal Research, 20(3), 771-775 https://doi.org/10.2112/1551-5036(2004)20[771:STPITW]2.0.CO;2
  29. Masselink, G., 1992, Longshore variation of grain size distribution along the coast of the Rhone Delta, Southern France: A test of the 'McLaren Model', Journal of Coastal Research, 8(2), 286-291
  30. Masselink, G., 1993, Longshore variation of grain size distribution along the coast of the Rhone Delta, Southern France: A test of the 'McLaren Model' - Reply, Journal of Coastal Research, 9(4), 1142- 1145
  31. McCave, I.N., 1978, Grain-size trends and transport along beaches: an example from eastern England, Marine Geology, 28, 43-51 https://doi.org/10.1016/0025-3227(78)90092-0
  32. McLaren, P. and Bowles, D., 1985, The effects of sediment transport on grain size distribution, Journal of Sedimentary Petrology, 55(4), 457-470
  33. McLaren, P., 1981, An interpretation of trends in grain size measures, Journal of Sedimentary Petrology, 51(2), 611-624
  34. McLaren, P., 1993, Longshore variation of grain size distribution along the coast of the Rhone Delta, Southern France: A test of the 'McLaren Model', Journal of Coastal Research, 8(2), 286-291
  35. Discussion of: Masselink, G., 1992, Longshore variation of grain size distribution along the coast of the Rhone Delta, Southern France: A test of the 'McLaren Model', Journal of Coastal Research, 9(4), 1136-1141
  36. McLaren, P., Cretney, W.J., and Powys, R.I., 1993, Sediment pathways in a British Columbia Fjord and their relationship with particle-associated contaminants, Journal of Coastal Research, 9(4), 1026-1043
  37. Pedreros, R., Howa, H.L., and Michel, D., 1996, Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas, Marine Geology, 135, 35-49 https://doi.org/10.1016/S0025-3227(96)00042-4
  38. Poizot, E., Mear, Y., Thomas, M., and Garnaud, S., 2006, The application of geostatistics in defining the characteristic distance for grain size trend analysis, Computers and Geosciences, 32, 360- 370 https://doi.org/10.1016/j.cageo.2005.06.023
  39. Pye, K. and Tsoar, H., 1990, Aeolian Sand and Sand Dunes, Unwin Hyman, London
  40. Rios, F., Cisternas, M., Le Roux, J., and Correa, I., 2002, Seasonal sediment transport pathways in Lirquen Harbor, Chile, as inferred from grainsize trends, Investigaciones Marinas, Valparaiso, 30(1), 3-23
  41. Shepard, F.P. and Young, R., 1961, Distinguishing between beach and dune sands, Journal of Sedimentary Petrology, 31(2), 196-214
  42. Stapor, F.W. and Tanner, W.F., 1975, Hydrodynamic implications of beach, beach ridge and dune grain size studies, Journal of Sedimentary Petrology, 45, 926-931
  43. Syvitski, J.P. and Murray, J.W., 1977, Grain-size distribution using log-probability plots-a discussion, Bulletin of Canadian Petroleum Geology, 25, 683-694
  44. Tucker, R.W. and Vacher, H.L., 1980, Effectiveness of discriminating beach, dune, and river sands by moments and the cumulative weight percentages, Journal of Sedimentary Petrology, 50, 165-172
  45. Vanwesenbeech, V. and Lankneus, J., 2000, Residual sediment transport paths on a tidal sand bank: A comparison between the modified McLaren model and bedform analysis, Journal of Sediment Research, 70(3), 470-477 https://doi.org/10.1306/2DC40920-0E47-11D7-8643000102C1865D
  46. Visher, G.S., 1969, Grain size distributions and depositional processes, Journal of Sedimentary Petrology, 39(3), 1074-1106