DOI QR코드

DOI QR Code

Coherent Absorption Spectroscopy with Supercontinuum for Semiconductor Quantum Well Structure

  • Byeon, Ciare C. (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute, GIST) ;
  • Oh, Myoung-Kyu (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute, GIST) ;
  • Kang, Hoon-Soo (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute, GIST) ;
  • Ko, Do-Kyeong (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute, GIST) ;
  • Lee, Jong-Min (Laser Spectroscopy Laboratory, Advanced Photonics Research Institute, GIST) ;
  • Kim, Jong-Su (Nanophotonics Laboratory, Advanced Photonics Research Institute, GIST) ;
  • Choi, Hyoung-Gyu (Nanophotonics Laboratory, Advanced Photonics Research Institute, GIST) ;
  • Jeong, Mun-Seok (Nanophotonics Laboratory, Advanced Photonics Research Institute, GIST) ;
  • Kee, Chul-Sik (Nanophotonics Laboratory, Advanced Photonics Research Institute, GIST)
  • 투고 : 2007.07.25
  • 발행 : 2007.09.25

초록

We suggest that supercontinuum can be used for absorption spectroscopy to observe the exciton levels of a semiconductor nano-structure. Exciton absorption spectrum of a GaAs/AlGaAs quantum well was observed using supercontinuum generated by a microstructrured fiber pumped by a femtosecond (fs) pulsed laser. Significantly narrower peaks were observed in the absorption spectrum from 11 K up to room temperature than photoluminescence (PL) spectrum peaks. Because supercontinuum is coherent light and can readily provide high enough intensity, this method can provide a coherent ultra-broad band light source to identify exciton levels in semiconductors, and be applicable to coherent nonlinear spectroscopy such as electromagnetically induced transparency (EIT), lasing without inversion (LWI) and coherent photon control in semiconductor quantum structures.

키워드

참고문헌

  1. Lene Vestergaard Hau, S. E. Harris, Zachary Dutton, and Cyrus H. Behroozi, 'Light speed reduction to 17 metres per second in an ultracold atomic gas,' Nature, vol. 397, pp. 594-598, 1999 https://doi.org/10.1038/17561
  2. M. D. Lukin and A. Imamoglu, 'Controlling photons with Electromagnetically Induced Transparency,' Nature, vol. 413, pp. 273-276, 2001 https://doi.org/10.1038/35095000
  3. Vlatko Balic, Danielle A. Braje, Pavel Kolchin, G. Y. Yin, and S. E. Harris, 'Generation of Paired Photons with Controllable Waveforms,' Phys. Rev. Lett., vol. 94, pp. 183601, 2005 https://doi.org/10.1103/PhysRevLett.94.183601
  4. Hoonsoo Kang and Yifu Zhu, 'Observation of Large Kerr Nonlinearity at Low Light Intensities,' Phys. Rev. Lett., vol. 91, pp. 93601, 2003 https://doi.org/10.1103/PhysRevLett.91.093601
  5. Hoonsoo Kang, Gessler Hernandez, and Yifu Zhu, 'Slow-Light Six-Wave Mixing at Low Light Intensities,' Phys. Rev. Lett., vol. 93, pp. 73601, 2004 https://doi.org/10.1103/PhysRevLett.93.073601
  6. Hoonsoo Kang, Gessler Hernandez, Jiepeng Zhang, and Yifu Zhu, 'Phase-controlled light switching at low light levels,' Phys. Rev. A, vol. 73, pp. 11801, 2006 https://doi.org/10.1103/PhysRevA.73.011802
  7. Michler P, Imamoglu A, Mason MD, Carson PJ, Strouse GF, and Buratto SK, 'Quantum correlation among photons from a single quantum dot at room temperature,' Nature, vol. 406, pp. 968-970, 2000 https://doi.org/10.1038/35023100
  8. Mark C. Phillips and Hailin Wang, 'Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence,' Phys. Rev. Lett., vol. 91, pp. 183602, 2003 https://doi.org/10.1103/PhysRevLett.91.183602
  9. M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, 'Gain without inversion in semiconductor nanostructures,' Nature materials, vol. 5, pp. 175-178, 2006 https://doi.org/10.1038/nmat1586
  10. H. Choi, C. S Kee, K. H. Hong, J. Sung, S. Kim, A. K. Ko, J. Lee, and H. Y. Park, 'Dispersion and birefringence of irregularly microstructured fiber with an elliptic core,' will be published in Applied Optics
  11. R. R. Alfano and S. L. Saphiro, 'Observation of selfphase modulation and small-scale filaments in crystals and glasses,' Phy. Rev. Lett., vol. 24, pp. 592-594, 1970 https://doi.org/10.1103/PhysRevLett.24.592
  12. P. B. Corkum and Claude Polland, 'Supercontinuum generation in gases,' Phy. Rev. Lett., vol. 57, pp. 2268-2271, 1986 https://doi.org/10.1103/PhysRevLett.57.2268
  13. A. Brodeur, Fa Ilkov, and S. L. Chin, 'Beam filamentation and the white light continuum divergence,' Optics Communication, vol. 129, pp. 193-198, 1996 https://doi.org/10.1016/0030-4018(96)00144-7
  14. Jonathan C. Knight, 'Photonic crystal fibres,' Nature, vol. 424, pp. 847-851, 2003 https://doi.org/10.1038/nature01940
  15. Jinendra K. Ranka, Robert S. Windeler, and Andrew J. Stentz, 'Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm.' Opt. Lett., vol. 25, pp. 25-27, 2000 https://doi.org/10.1364/OL.25.000025
  16. N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, 'Introduction to Semiconductor Optics,' Prentics-Hall International, Inc., pp. 132-134, 1993

피인용 문헌

  1. Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers vol.6, pp.12, 2017, https://doi.org/10.1038/lsa.2017.124
  2. Characterization of Supercontinuum and Ultraviolet Pulses by Using XFROG vol.13, pp.1, 2009, https://doi.org/10.3807/JOSK.2009.13.1.158
  3. All-optical switching with a biexcitonic double lambda system vol.284, pp.4, 2011, https://doi.org/10.1016/j.optcom.2010.10.039
  4. High-harmonic Generation from Solid Surface Using an Oscillating Mirror Model and Plasma Mirror System for High Contrast Laser Pulse vol.13, pp.1, 2009, https://doi.org/10.3807/JOSK.2009.13.1.015
  5. Electromagnetically induced transparency on GaAs quantum well to observe hole spin dephasing vol.16, pp.20, 2008, https://doi.org/10.1364/OE.16.015728
  6. Half mJ Supercontinuum Generation in a Telecommunication Multimode Fiber by a Q-switched Tm, Ho:YVO4Laser vol.19, pp.1, 2015, https://doi.org/10.3807/JOSK.2015.19.1.007