DOI QR코드

DOI QR Code

Single-mode Condition and Dispersion of Terahertz Photonic Crystal Fiber

  • Kim, Soan (Nanophotonics Laboratory, Advanced Photonics Research Institute and School of Photon Science and Technology, GIST) ;
  • Kee, Chul-Sik (Nanophotonics Laboratory, Advanced Photonics Research Institute and School of Photon Science and Technology, GIST) ;
  • Lee, Jong-Min (Nanophotonics Laboratory, Advanced Photonics Research Institute and School of Photon Science and Technology, GIST)
  • 투고 : 2007.07.25
  • 발행 : 2007.09.25

초록

We have investigated properties of a plastic photonic crystal fiber guiding terahertz radiations, THz photonic crystal fiber. The single-mode condition and dispersion of a plastic triangular THz photonic crystal fiber are investigated by using the plane wave expansion method and the beam propagation method. The THz photonic crystal fiber can perform as a single-mode fiber below 2.5 THz when the ratio of diameter (d) and period (${\Lambda}$) of air holes is less than 0.475. The THz photonic crystal fiber with ${\Lambda}=500{\mu}m$ and $d/{\Lambda}=0.4$ shows almost zero flattened dispersion behavior, $-0.03{\pm}0.02 ps/THz{\cdot}cm$, in the THz frequency range from 0.8 to 2.0 THz.

키워드

참고문헌

  1. C. Otani, T. Taino, R. Nakano, K. Hoshino, T. Shibuya, H. Myoren, S. Ariyoshi, H. Sato, H. M. Shimizu, S. Takada, and K. Kawase, 'A Broad-Band THz Radiation Detector Using a Nb-Based Superconducting Tunnel Junction,' IEEE Trans. Appl. Supercond, vol. 15, pp. 591-594, 2005 https://doi.org/10.1109/TASC.2005.849950
  2. K. Kawase, J. Shikata, and H. Ito, 'Terahertz wave parametric source,' J. Phys. D: Appl. Phys., vol. 35, pp. R1-R14, 2002 https://doi.org/10.1088/0022-3727/35/3/201
  3. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, 'Terahertz waveguides,' J. Opt. Soc. Am. B., vol. 17, pp. 851-863, (2000) https://doi.org/10.1364/JOSAB.17.000851
  4. R. Mendis and D. Grischkowsky, 'Plastic ribbon THz waveguides,' J. Appl. Phys., vol. 88, pp. 4449-4451, 2000 https://doi.org/10.1063/1.1310179
  5. S. Coleman and D. Grischkowsky, 'A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics,' Appl. Phys. Lett., vol. 83, pp. 3656-3658, 2003 https://doi.org/10.1063/1.1624474
  6. J. C. Knight and P. St. J. Russell, 'Photonic crystal fibers: New ways to guide light,' Science, vol. 296, pp. 276-277, 2002 https://doi.org/10.1126/science.1070033
  7. W.H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts, 'Demonstration of ultra-flattened dispersion in photonic crystal fibers,' Opt. Exp., vol. 10, pp. 609-613, 2002 https://doi.org/10.1364/OE.10.000609
  8. M. Szpulak, J. Olszewski, T. Martynkien, W. Urbanczyk, and J. Wojcik, 'Polarizing photonic crystal fibers with wide operation range,' Opt. Commun., vol. 239, pp. 91-97, 2004 https://doi.org/10.1016/j.optcom.2004.05.020
  9. A. Ferrando, M. Zacares, P. Fernandez de Cordoba, D. Binosi, and J. Monsoriu, 'Spatial soliton formation in photonic crystal fibers,' Opt. Exp., vol. 11, pp. 452-459, 2003 https://doi.org/10.1364/OE.11.000452
  10. H. Han, H. Park, M. Cho, and J. Kim, 'Terahertz pulse propagation in a plastic photonic crystal fiber,' Appl. Phys. Lett., vol. 80, pp. 2634-2636, 2002 https://doi.org/10.1063/1.1468897
  11. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, 'Teflon Photonic Crystal Fiber as Terahertz Waveguide,' Jpn. J. Appl. Phys., vol. 43, pp. L317-L319, 2004 https://doi.org/10.1143/JJAP.43.L317
  12. S. Guo and S. Albin, 'Simple plane wave implementation for photonic crystal calculations,' Opt. Exp., vol. 11. pp. 167-175, 2003 https://doi.org/10.1364/OE.11.000167
  13. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, 'Modal cutoff and the V parameter in photonic crystal fibers,' Opt. Lett., vol. 28, pp. 1879-1881, 2003 https://doi.org/10.1364/OL.28.001879

피인용 문헌

  1. Design of large-mode-area multi-core photonic crystal fibers with low confinement loss and dispersion vol.102, pp.5, 2015, https://doi.org/10.1134/S0021364015170075
  2. Design of the miniaturized free electron laser module as an efficient source of the THz waves vol.654, pp.1, 2011, https://doi.org/10.1016/j.nima.2011.06.052
  3. Determination of Crystallographic Axes of Photonic Crystal Fiber by Transversal Scanning Method vol.49, pp.10, 2010, https://doi.org/10.1143/JJAP.49.102503
  4. Terahertz Wave Transmission Properties of Metallic Periodic Structures Printed on a Photo-paper vol.14, pp.3, 2010, https://doi.org/10.3807/JOSK.2010.14.3.282
  5. Analysis and Design of Single-Mode As2Se3-Chalcogenide Photonic Crystal Fiber for Generation of Slow Light With Tunable Features vol.22, pp.2, 2016, https://doi.org/10.1109/JSTQE.2015.2477781