소 수정란의 초기 난할 시기에 내부 세포괴와 영양막 세포로의 운명 결정

Determination of Cell Fate for Inner Cell Mass and Trophectoderm Cells in Bovine Early Cleaving Embryos

  • 송봉석 (한국생명공학연구원 재생의학연구센터) ;
  • 김지수 (한국생명공학연구원 재생의학연구센터) ;
  • 김철희 (충남대학교 생명과학부) ;
  • 이경광 (한국생명공학연구원 재생의학연구센터) ;
  • 구덕본 (한국생명공학연구원 재생의학연구센터)
  • Song, Bong-Seok (Center for Regenerative Medicine, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Ji-Su (Center for Regenerative Medicine, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Cheol-Hee (Department of Biology, Chungnam National University) ;
  • Lee, Kyung-Kwang (Center for Regenerative Medicine, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Koo, Deog-Bon (Center for Regenerative Medicine, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 발행 : 2007.09.30

초록

본 연구는 소의 초기 난할 단계인 2 또는 4세포기 수정란의 특정 분할구가 배반포 단계의 내부 세포괴(Inner Cell Mass)와 영양막 세포(Trophectoderm cells)로의 발달 운명이 미리 정해지는 지를 확인하기 위해 실시되었다. 먼저 생쥐의 체내수정란과 소의 체외 수정란에서 배반포의 영양막 세포에서만 특이적으로 발현하는 cdx2단백질의 발현 양상을 조사하였다. 또한, 소의 경우 2세포기와 4세포기가 내부 세포괴와 영양막 세포로 나눠지는 시점인지를 조사하기 위해 2 또는 4세포기의 특정 분할구에 Dextran의 주입 실험과 분할구 제거 실험을 통해 ICM과 TE 형성을 확인하였다. cdx2의 발현 경향은 생쥐와 소의 2세포기일 때 대칭과 비대칭적으로 발현되는 것을 확인하였다. 생쥐의 4, 8세포기 및 상실배기에서는 분할구 전체에서 발현되었으나, 소 수정란의 분할구에서는 전체 또는 부분적으로 발현되었다. 또한, 생쥐와 소의 배반포기에서는 영양막 세포에서만 발현이 되는 것을 확인하였다. 소 수정란의 2세포기와 4세포기 단계에서 특정 분할구에 주입된 De xtran은 배반포의 내부 세포괴와 영양막 세포의 양쪽에 분포된 것을 관찰할 수 있었다. 2세포기 단계에서 하나의 분할구가 제거된 수정란 역시 ICM 및 TE 세포를 지닌 정상 배반포로 발달함을 확인하였다. 따라서 본 연구 결과는 영양막 세포에서만 특이적으로 발현하는 cdx2의 발현이 2 또는 4세포기 단계 소 수정란에서는 특별한 차이를 보이지 않으며, 궁극적으로 난할 초기에는 ICM과 TE 세포로의 운명이 결정되지 않는다는 것을 보여준다.

The present study was examined the expression patterns of cdx2 gone, n lineage marker, in the mouse and bovine developmental stage embryos and whether one blastomere of two- and/or four-cell bovine embryos develop to specific lineage (ICM or TE) of blastocyst by injection of Texas red conjugated dextran as a lineage tracer. It was also investigated the allocation of ICM and n cells in bovine blastocysts derived from one blastomere of two-and/or four-cell stage embryos. Firstly, it was observed that expression of cdx2 appeared symmetric and asymmetric distribution at the two-cell stage mouse embryos. from four-cell to morula stage mouse embryos, the expression of cdx2 gene was observed in almost all blastomeres. In case of bovine embryos, localization of cdx2 was similar to pattern of mouse embryos. The Dextran-labeled blastomere of two- and/or four-cell embryos contributed to both ICM and TE cells in bovine blastocysts. And also, it was confirmed that a single blastomere derived from two-cell stage bovine embryos could develop to the normal blastocyst with both ICM and TE cells. These results show that two-and/or four-cell stage is not the specific stage to determine the cell rate for ICM and TE, and which is not correlated with the expression of cdx2 gene.

키워드

참고문헌

  1. Bavister BD (1989): A consistently successful procedure for in vitro fertilization of golden hamster eggs. Gamete research 23:139-158 https://doi.org/10.1002/mrd.1120230202
  2. Bavister BD, Yanagimachi R (1977): The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoa in vitro. BioI Reprod 16:228-237 https://doi.org/10.1095/biolreprod16.2.228
  3. Kirchhof N, Camwath JW, Lemme E, Anastassiadis K, Scholer H, Niemann H (2000): Expression pattern of Oct-4 in preimplantation embryos of different species. Biol Reprod 63: 1698-1705 https://doi.org/10.1095/biolreprod63.6.1698
  4. Koo DB, Kang YK, Choi YH, Park JS, Kim HN, Oh KB, Son DS, Park H, Lee KK, Han YM (2002): Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts. BioI Reprod 67:487-492 https://doi.org/10.1095/biolreprod67.2.487
  5. Kurosaka S, Eckardt S, McLaughlin KJ (2004): Pluripotent lineage definition in bovine embryos by Oct4 transcript localization. Biol Reprod 71:1578-1582 https://doi.org/10.1095/biolreprod.104.029322
  6. Latham KE, Solter D, Schultz RM (1992): Acquisition of a transcriptionally permissive state during the I-cell stage of mouse embryogenesis. Dev Biol 149: 457-462 https://doi.org/10.1016/0012-1606(92)90300-6
  7. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998): Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379-391 https://doi.org/10.1016/S0092-8674(00)81769-9
  8. Niwa H, Toyooka Y, Shimosato D, Strurnpf D, Takahashi K, Yagi R, Rossant J (2005): Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123:917-929 https://doi.org/10.1016/j.cell.2005.08.040
  9. Parrish JJ, Susko-Parrish J, Winer MA, First NL (1988): Capacitation of bovine sperm by heparin. BioI Reprod 38:1171-1180 https://doi.org/10.1095/biolreprod38.5.1171
  10. Piotrowska K, Wianny F, Pedersen RA, Zernicka-Goetz M (2001): Blastomeres arising from the first cleavage division have distinguishable fates in normal mouse development. Development 128:3739-3748
  11. Piotrowska K, Zernicka-Goetz M (2001): Role for sperm in spatial patterning of the early mouse embryo. Nature 409:517-521 https://doi.org/10.1038/35054069
  12. Piotrowska K, Zernicka-Goetz M (2005): Spatial arrangement of individual 4-cell stage blastomeres and the order in which they are generated correlate with blastocyst pattern in the mouse embryo. Mech Dev 122:487-500 https://doi.org/10.1016/j.mod.2004.11.014
  13. Roberts RM, Ezashi T, Das P (2004): Trophoblast gene expression: transcription factors in the specification of early trophoblast. Reprod Biol Endocrinol 2:47 https://doi.org/10.1186/1477-7827-2-47
  14. Rosenkrans CF, Jr., Zeng GQ MCNamara GT, Schoff PK, First NL (1993): Development of bovine embryos in vitro as affected by energy substrates. BioI Reprod 49:459-462 https://doi.org/10.1095/biolreprod49.3.459
  15. Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005): Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093-2102 https://doi.org/10.1242/dev.01801
  16. Telford NA, Watson AJ, Schultz GA (1990): Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev 26:90-100 https://doi.org/10.1002/mrd.1080260113
  17. Waksmundzka M, Wisniewska A, Maleszewski M (2006): Allocation of cells in mouse blastocyst is not determined by the order of cleavage of the first two blastomeres. Biol Reprod 75:582-587 https://doi.org/10.1095/biolreprod.106.053165
  18. Wee G, Koo DB, Song BS, Kim JS, Kang MJ, Moon SJ, Kang YK, Lee KK, Han YM (2006): Inheritable histone H4 acetylation of somatic chromatins in cloned embryos. J BioI Chem 281:6048-6057 https://doi.org/10.1074/jbc.M511340200
  19. Whittingham DG (1971): Culture of mouse ova. J Reprod Fertil 14:7-21
  20. Won C, Park SK, Choi YJ, Kang H, Roh S (2007): Leading blastomere of 2-cell-stage porcine parthenogenetic embryo contributes to trophectoderm first. Reprod Fertil Dev 19:196