FIV-Tet-On Vector System을 이용한 hG-CSF 유전자의 효율적인 발현 조절

Efficient Control of Human G-CSF Gene Expression in the Primary Culture Cell using a FIV-Tet-On Vector System

  • 권모선 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 구본철 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 김태완 (대구가톨릭대학교 의과대학 생리학교실)
  • Kwon, Mo-Sun (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Koo, Bon-Chul (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Kim, Te-Oan (Department of Physiology, Catholic University of Daegu School of Medicine)
  • 발행 : 2007.09.30

초록

본 연구에서: hG-CSF의 발현을 유도적으로 조절하기 위한 FIV-Tet-On lentivirus vector system을 구축하고자 하였다. hG-CSF는 호중성구 계열 세포의 증식과 분화, 생존에 영향을 미치는 물질로서, 이 유전자의 발현을 증가시키기 위하여 FIV-Tet-On vector 상의 hG-CSF나 $rtTA2^SM2$ 서열의 3' 위치에 WPRE 서열을 도입하였다. 구축된 각각의 vector는 293FT 세포에 일시적으로 transfection하여 virus를 생산하였으며, 이 virus를 일차 배양 세포인 CEF와 PFF에 감염시켰다. 각 세포에 전이되 hG-CSF의 발현 양상을 관찰하기 위하여 doxycycline을 첨가하거나 첨가하지 않은 배지에서 배양한 후 quantitative real-time PCR, Western blot과 ELISA를 이용하여 hG-CSF 유전자의 발현 정도를 비교 측정한 결과, CEF에서는 WPRE가 hG-CSF의 3' 위치에 도입된 경우에 발현량과 유도율이 가장 높은 것으로 나타났고, PFF에서는 rtTA 서열의 3'위치에 도입된 경우에 발현량과 유도율이 가장 큰 것으로 확인되었다. 이 FIV-Tet-On vector system은 형질 전환 동물의 생산이나 유전자 치료에서 문제시되는 외래 유전자의 지속적인 과다 발현에 의한 개체의 생리적인 부작용을 최소화하기 위한 해결 방법으로 제시될 수 있을 것이다.

In this study, using FIV-based lentivirus vector system, we tried to express hG-CSF in tetracycline-controllable manner. hG-CSF influences the proliferation, differentiation, and survival of cells in the neutrophil lineage. To enhance stability and translation of hG-CSF transcript, WPRE sequence was also introduced into FIV-Tet-On vector at downstream region of either the hG-CSF gene or the sequence encoding rtTA. Primary culture cells (CEF, chicken embryonic fibroblast; PFF, procine fetal fibroblast) infected with the recombinant FIV were cultured in the medium supplemented with or without doxycycline for 48 hours, and induction efficiency was measured by comparing the hG-CSF gene expression level using quantitative real-time PCR, Western blot and ELISA. Higher hG-CSF expression and tighter expression control were observed from the vector in which the WPRE sequence was placed at downstream of the hG-CSF (in CEF) or rtTA (in PEE) gene. This FIV-Tet-On vector system may be helpful in solving serious physiological disturbance problems which has continuously hampered successful production of transgenic animals and gene therapy.

키워드

참고문헌

  1. Amado RG, Chen IS (1999): Lentiviral vectors-the promise of gene therapy within reach? Science 285: 674-676 https://doi.org/10.1126/science.285.5428.674
  2. Berkowitz R lives H, Lin WY, Eckert K, Coward A, Tamaki S, Veres G, Plavec I (2001): Construction and molecular analysis of gene transfer systems derived from bovine immunodeficiency virus. J Virol 75: 3371-3382 https://doi.org/10.1128/JVI.75.7.3371-3382.2001
  3. Bober LA, Grace MJ, Puliese-Sivo C, Rojas-Triana A, Waters T, Sullivan LM, Narula SK, (1995): The effect of GM-CSF and G-CSF on human neutrophil function. Immunopharmacology 29:111-119 https://doi.org/10.1016/0162-3109(94)00050-P
  4. Bum S, Faucon-Biguet N, Mallet J (2003): Optimization of transgene expression at the posttranscriptional level in neural cells: implication for gene therapy. Mol Ther 7:782-789 https://doi.org/10.1016/S1525-0016(03)00097-2
  5. Curran MA, Ochoa MS, Molano RD, Pileggi A, Inverardi L, Kenyon NS, Nolan GP, Ricordi C, Fenjves ES (2002): Efficient transduction of pancreatic islets by feline immunodeficiency virus vectors. Transplantation 74:299-306 https://doi.org/10.1097/00007890-200208150-00003
  6. Emerman M (1996): From curse to cure: HIV for gene therapy? Nat Bioteclmol 14:943 https://doi.org/10.1038/nbt0896-943
  7. Fabian I, Kletter Y, Bleiberg I, Gadish M, Naparsteck E, Slavin S (1991): Effect of exogenous recombinant human granulocyte and granulocyte-macrophage colony-stimulating factor on neutrophil function following allogeneic bone marrow transplantation. Exp Hematol 19:868-873
  8. Gossen M, Bujard H (1992): Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89: 5547-5551
  9. Hlavaty J, Schittmayer M, Stracke A, Jandl G, Knapp E, Felber BK, Salmons B, Gunzburg WH, Renner M (2005): Effect of posttranscriptional regulatory elements on transgene expression and virus production in the context of retrovirus vectors. Virology 341:1-11 https://doi.org/10.1016/j.virol.2005.06.037
  10. Johnston JC, Gasmi M, Lim LE, Elder JH, Yee J-K, Jolly DJ, Campbell KP, Davidson BL, Sauter SL (1999): Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J Virol 73:4991-5000
  11. Kafri T, van Praag H, Gage FH, Verma IM (2000): Lentiviral vectors: regulated gene expression. Mol Ther 1:516-521 https://doi.org/10.1006/mthe.2000.0083
  12. Koponen JK, Kankkonen H, Kannasto J, Wirth T, Hillen W, Bujard H, Yla-Herttuala S (2003): Doxycycline-regulated lentiviral vector system with a novel reverse transactivator $rtTA2^S$-M2 shows a tight control of gene expression in vitro and in vivo. Gene Ther 10:459-466 https://doi.org/10.1038/sj.gt.3301889
  13. Lieschke GJ, Burgess AW (1992): Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. N Eng J Med 327:28-35 https://doi.org/10.1056/NEJM199207023270106
  14. Livak KJ, Schmittgen TD (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T) Method. Methods 25:402-408 https://doi.org/10.1006/meth.2001.1262
  15. Loeb JE, Cordier WS, Harris ME, Weitzman MD, Hope TJ (1999): Enhanced expression of transgenes from adeno-associated virus vectors with the woodchuck hepatitis virus posttranscriptional regulatory element: implications for gene therapy. Hum Gene Ther 10:2295-2305 https://doi.org/10.1089/10430349950016942
  16. Loewen N, Bahler C, Teo WL, Whitwam T, Peretz M, Xu R, Fautsch MP, Johnson DH, Poeschla EM (2002): Preservation of aqueous outflow facility after second-generation FIV vector-mediated expression of marker genes in anterior segments of human eyes. Invest Ophthalmol Vis Sci 43:3686-3690
  17. Minvielle-Sebastia L, Keller W (1999): mRNA polyadenylation and its coupling to other RNA processing reactions and to transcription. Curr Opin Cell BioI 11:352-357 https://doi.org/10.1016/S0955-0674(99)80049-0
  18. Mitrophanous K, Yoon S, Rohll J, Patil D, Wilkes F, Kim V, Kingsman S, Kingsman A, Mazarakis N (1999): Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther 6: 1808-1818 https://doi.org/10.1038/sj.gt.3301023
  19. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998): Development of a self-inactivating lentivirus vector. J Virol 72:8150-5157
  20. Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1999a): Efficient tansfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382-11388
  21. Naldini L, Blomer U, Gsllay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996b): In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263-267 https://doi.org/10.1126/science.272.5259.263
  22. Poeschla EM, Wong-Staal F, Looney DJ (1998): Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med 4:354-357 https://doi.org/10.1038/nm0398-354
  23. Price MA, Case SS, Carbonaro DA, Yu XJ, Petersen D, Sabo KM, Curran MA, Engel BC, Margarian H, Abkowitz JL, Nolan GP, Kohn DB, Crooks GM (2002): Expression from second-generation feline immunodeficiency virus vectors is impaired in human hematopoietic cells. Mol Ther 6:645-652 https://doi.org/10.1016/S1525-0016(02)90725-2
  24. Ramenzani A, Hawley TS, Hawley RG (2000): Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol Ther 2:458-467 https://doi.org/10.1006/mthe.2000.0190
  25. Reiser J, Harmison G, Kluepfel-Stahl S, Brady RO, Karlsson S, Schubert M (1996): Transduction of nondividing cells using pseudotyped defective hightiter HIV type 1 particles. Proc Natl Acad Sci USA 93: 15266-15271
  26. Romano G (2005): Current development of lentiviral-mediated Gene Transfer. Drug News & Perspectives. 18: 128-134 https://doi.org/10.1358/dnp.2005.18.2.886481
  27. Saenz DT, Poeschla EM (2004): FIV: from lentivirus to lentivector. J Gene Med 6:595-5104 https://doi.org/10.1002/jgm.627
  28. Sauter SL, Gasmi M (2001): FIV vector systems. Somat Cell Mol Genet 26:99-129 https://doi.org/10.1023/A:1021078714105
  29. Song JJ, Lee B, Chang JW, Kim J-H, Kim Kwon Y, Lee H (2003): Optimization of vesicular stomatits-G pseudotyped feline immunodeficiency virus vector for minimized cytotoxicity with efficient gene transfer. Virus Res 93:25-30 https://doi.org/10.1016/S0168-1702(03)00047-9
  30. Soriano P, Friedrich G, Lawinger P (1991): Promoter interactions in retrovirus vectors introduced into fibroblasts and embryonic stem cells. J Virol 65:2314-2319
  31. Stein CS, Davidson BL (2002): Gene transfer to the brain using feline-immunodeficiency virus-based lentivirus vectors. Methods Enzymol 346:433-454 https://doi.org/10.1016/S0076-6879(02)46070-3
  32. Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W (2000): Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 97:7963-7968
  33. Wang G, Slepushkin V, Zabner J, Keshavjee S, Johnston JC, Sauter SL, Jolly DJ, Dubensky TW, Davidson BL, McCray PB (1999): Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect. J Clin Invest 104:R55-R62 https://doi.org/10.1172/JCI8390
  34. Zufferey R Donello JE, Trono D, Hope TJ (1999): Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886-2892