DOI QR코드

DOI QR Code

Low Temperature Sintering and Dielectric Properties of BiNbO4 and ZnNb2O6 Ceramics with Zinc Borosilicate Glass

  • Kim, Kwan-Soo (Department of Ceramics Engineering, Kangnung National University) ;
  • Kim, Shin (Department of Ceramics Engineering, Kangnung National University) ;
  • Yoon, Sang-Ok (Department of Ceramics Engineering, Kangnung National University) ;
  • Park, Jong-Guk (Department of Electrical Engineering, Kangwon National University)
  • Published : 2007.10.31

Abstract

Low temperature sintering behavior and microwave dielectric properties of the $BiNbO_{4^-}$ and the $ZnNb_2O_{6^-}zinc$ borosilicate glass(ZBS) systems were investigated with a view to applying the composition to LTCC technology. The addition of $10{\sim}30$ wt% ZBS in both systems ensured successful sintering below $900^{\circ}C$. For the $BiNbO_{4^-}ZBS$ system, the sintering was completed when 15 wt% ZBS was added whereas 25 wt% ZBS was necessary for the $ZnNb_2O_{6^-}zinc$ system. Secondary phase was not observed in the $BiNbO_{4^-}ZBS$ system but a small amount of $ZnNb_2O_6$ with the willemite structure as the secondary phase was observed in the $ZnNb_2O_{6^-}ZBS$ system. In terms of dielectric properties, the application of the $BiNbO_{4^-}$ and the $ZnNb_2O_{6^-}ZBS$ systems sintered at $900^{\circ}C$ to LTCC were shown to be appropriate; $BiNbO_{4^-}15$ wt% ZBS($\varepsilon_r=25,\;Q{\times}f\;value=3,700GHz,\;\tau_f=-32ppm/^{\circ}C$) and $ZnNb_2O_{6^-}25$ wt% ZBS($\varepsilon_r=15.8,\;Q{\times}f\;value=5,400GHz,\;\tau_f=-98ppm/^{\circ}C$).

Keywords

References

  1. T. Takada, S. F. Wang, S Yoshikawa, S. T. Tang, and R. E. Newnham, 'Effect of glass addition on $BaO-TiO_{2}-WO_{3}$ microwave ceramics', J. Am. Ceram. Soc., Vol. 77, No.7, p. 1909, 1994
  2. V. Tolmer and G. Desgardin, 'Low-temperature sintering and influence of the processing on the dielectric properties of $Ba(Zn_{1/3}Ta_{2/3})O_{3}$', J. Am. Ceram. Soc., Vol. 80, No.8, p. 1981, 1997
  3. Kagata, H., Inoue, T., Kato, J., and Kameyama, I., 'Low-fire bismuth-based dielectric ceramics for microwave use', Jpn. J. Appl. Phy., Vol. 31, p. 3152, 1992
  4. S. K. Ko, K. Y. Kim, B. H. Kim, and W. Choi, 'Experimental fabrication of low pass filter of $BiNbO_4$ ceramics', J. of KIEEME(in Korean), Vol. 11, No.4, p. 281, 1998
  5. O. A. Shlyakhtin, A. V. Orlov, and Y. J. Oh, 'Liquid phase low temperature sintering of niobate and cerate fine powders', J. Electroceram., Vol. 17, No. 2-4, p. 405, 2006 https://doi.org/10.1007/s10832-006-9711-9
  6. C. L. Huang and M. H. Weng, 'Low-fire $BiTaO_4$ dielectric ceramics for microwave applications', Mater. Lett., Vol. 43, p. 32, 2000
  7. N. Wang, M. Y. Zhao, and Z. W. Yin, 'Effects of $Ta_{2}O_{5} $ on microwave dielectric properties of $BiNbO_4$ ceramics', Mater. Sci & Eng. B, Vol. 99, p. 238, 2003 https://doi.org/10.1016/S0921-5107(02)00464-6
  8. M. Maeda, T. Yamamura, and T. Ikeda, 'Dielectric characteristics of several complex oxide ceramics at microwave frequencies', Jpn. J. Appl. Phys., Vol. 26, p. 76, 1987
  9. H. J. Lee, K. S. Hong, and S. J. Kim, 'Dielectric properties of $MNb_{2}O_{6}$ compounds (Where M = Ca, Mn, Co, Ni, OR Zn)', Mater. Res. Bull., Vol. 32, No.7, p. 847, 1997
  10. Y. Zhang, J. Wang, Z. Yue, Z. Gui, and L. L, 'Effect of $Mg^{2+}$ substitution on microstructure and microwave dielectric properties of $(Zn_{1-x}Mg_{x})Nb_{2}O_{6}$ ceramics', Ceram. Int., Vol. 30, p. 87, 2004 https://doi.org/10.1016/S0272-8842(03)00068-3
  11. B. W. Hakki and P. D. Coleman, 'A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Ranger', IRE. Trans. on Microwave Theory Tech., MTT-8, p. 402, 1960
  12. J.-M. Wu and H.-L. Huang, 'Microwave properties of Zinc, Barium and Lead borosilicate glasses', J. Non-Cryst. Solids, Vol. 260, p. 116, 1999
  13. K. G. Ewsuk, L. W. Harrison, and F. J. Walczak, 'Sintering glass-filled ceramic composites: Effet of glass properties', p. 969 in Ceramic Transaction, Vol. 1(B), edited by G. L. Messing, E. R. Fuller, Jr., and H. Hausner, Am. Ceram. Soc. Westerville, OH, Vol. 1(B), p. 969, 1988
  14. K. G. Ewsuk, 'Sintering maps for ceramic-filled glass composites', edited by K. M. Nair, R. Pohanka, and R. C. Buchaman, Am. Ceram. Soc. Westerville, OH, Vol. 19, p. 123, 1990
  15. S. Kemethmuller, M. Hagymasi, A. Stiegelschmitt, and A. Roosen, 'Viscous flow as the driving force for the densification of low-temperature co-fired ceramics', J. Am. Ceram. Soc., Vol. 90, p. 64, 2007 https://doi.org/10.1111/j.1551-2916.2006.01362.x
  16. J. H. Jean and T. K. Gupta, 'Devitrification inhibitors in borosilicate glass and binary borosilicate glass composition', J. Mater. Res., Vol. 10, No.5, p. 1312, 1995
  17. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, 'Introduction to ceramics 2nd edition', John Wiley and Sons, New York, p. 947, 1976
  18. E. S. Kim and W. Choi, 'Effect of phase transition on the microwave dielectric properties of $BiNbO_4$', J. Eur. Ceram. Soc., Vol. 26, p. 1761, 2006 https://doi.org/10.1016/j.jeurceramsoc.2005.09.003