DOI QR코드

DOI QR Code

Ethanol Induced Leucocytic and Hepatic DNA Strand Breaks Are Prevented by Styela clava and Styela plicata Supplementation in Male SD Rats

알코올로 인한 흰쥐의 백혈구 및 간 DNA 손상에 미치는 미더덕과 오만둥이 분말의 보충섭취 효과

  • Kim, Jung-Mi (Dept. of Food and Nutrition, Kyungnam University) ;
  • Park, Hae-Ryoung (Dept. of Food Science and Biotechology, Kyungnam University) ;
  • Lee, Seung-Cheol (Dept. of Food Science and Biotechology, Kyungnam University) ;
  • Park, Eun-Ju (Dept. of Food and Nutrition, Kyungnam University)
  • 김정미 (경남대학교 식품영양학과) ;
  • 박해룡 (경남대학교 식품생명학과) ;
  • 이승철 (경남대학교 식품생명학과) ;
  • 박은주 (경남대학교 식품영양학과)
  • Published : 2007.10.30

Abstract

In this study, the ability of Styela clava or Styela plicata to reduce ethanol-induced hepatotoxicity and hepatic and leucocytic DNA damages was evaluated. Twenty four male SD rats were given 25% ethanol containing water (ad lib, p.o.) and divided into 3 groups; ethanol treated control group (EtOH), ethano1+3% S. clava (EtOH+SC), and ethano1+3% S. plicata (EtOH+SP). After 6 weeks, the supplementation of S. clava reduced the plasma ALT, ALP and LDH activities significantly (p<0.05), while S. plicata induced significant decrease in the plasma LDH activity only. The comet assay was employed to quantify the alcohol-induced DNA damage in rat hepatocytes and leucocytes. A significant protective effect on hepatic and leucocytic DNA damages was observed in S. clava or S. plicata supplemented groups compared to the EtOH control group. The hepatic DNA damage was correlated positively with plasma ALP and LDH activities. These results demonstrated that S. clava or S. plicata supplementation protected alcohol-induced hepatic and leucocytic DNA damage.

미더덕과 오만둥이는 독특한 향과 맛이 있는 식품으로 널리 알려져 있으며 우리나라 전역에서 자생하나 경상남도 마산에서 가장 많이 생산되고 있는 해양생물이다. 한편, 과량의 에탄올 섭취는 microsomal ethanol oxidizing system(MEOS)에 의한 에탄을 산화를 증가시켜 superoxide ion, hydrogen peroxide, hydroxyl radical, 1-hydroxyethyl radical과 같은 활성산소종을 생성하여 산화적 스트레스 상태를 유발하게 된다. 본 연구에서는 미더덕과 오만둥이의 보충투여가 과량의 에탄을 투여로 인해 유도되는 간기능 관련 지표와 간세포 및 백혈구 DNA손상정도에 미치는 영향을 보고자 SD계 수컷 쥐를 세 군으로 나누어 6주간 25% 에탄을 용액을 자유로이 섭취하게 하면서 동결 건조하여 분말화한 미더덕과 오만둥이를 식이의 3%(w/w) 수준으로 보충투여하였다. 6주간의 미더덕과 오만둥이 투여는 체중증가 량, 식이 및 에탄을 섭취량, 간을 비롯한 각종 장기무게에는 아무런 영향을 끼치지 않았다. 미더덕과 오만둥이 보충투여는 총 콜레스테롤을 비롯한 혈장 지질 수준에는 유의적인 영향이 없었지만, 혈장 ALT, ALP, LDH 활성 등 간기능 관련 지표들을 유의적으로 감소시켰다. 또한 미더덕과 오만둥이는 과량의 에탄을 섭취로 유도된 흰쥐의 백혈구, 간세포의 DNA손상을 유의적으로 감소시킨 것으로 나타났으며, 간세포 DNA 손상도는 혈장 ALP와 LDH 활성과 유의적인 양의 상관관계를 보여주었다. 결론적으로 미더덕과 오만둥이 분말의 보충투여는 알코올 섭취로 인해 유도된 간조직 손상에 대한 보호작용이 있는 것으로 사료된다.$ 수준은 GTP 20%를 첨가한 식이를 제공받은 군에서 유의적으로(p<0.05) 감소하였다 간의 TG와 TBARS 수준은 GTP 20%를 첨가한 식이를 제공받은 군에서 감소하는 경향을 보였으며 GTP의 첨가가 간에서의 GSH함량 및 항산화 효소계의 활성을 증진시키는 것으로 나타났다. GTP를 첨가한 식이를 섭취한 실험군의 1일 변중의 총 지방 및 TG 배설량은 유의적인 차이는 보이지 않았으나 OVX-C군에 비해 다소 높은 경향을 보였으며 총 콜레스테롤 배설량은 OVX-C군에 비해 높은 수준이었다. 난소 절제 흰쥐에서 5% GTP를 제공받은 군에 비해 20% GTP를 첨가한 식이를 제공받은 군에서 혈액과 간에서의 지질농도 감소와 항산화 효소의 활성이 높은 수준을 보여 GTP의 첨가량이 높을수록 더 효과적인 것으로 나타났다. 이상의 결과들로 미루어 볼 때 난소절제 흰쥐에서 GTP 첨가가 변의 총지질과 TG및 콜레스테롤 배설을 증가시켜 혈청과 간의 총 지질 농도와 TG및 총콜레스테롤 농도를 감소시키는 것과 관련이 있는 것으로 보이며 GTP의 섭취가 체내 총 지질 농도를 감소시켜 항 동맥경화 작용을 나타내는 것으로 사료된다. 따라서 녹차가공품의 폐경기 고지혈증 개선을 위한 기능성식품으로의 가능성을 보여 준다고 할 수 있다.용적중 등 품질 평가 기준에서 차이가 없었다.50 에서는 43% 발효주에는 0.95 cm, 45% 고은 발효주에는 0.95 cm의 항균성을 나타냈으며 관능평가에서도 가장 높게 났다. 관능평가에서는 45% 고온 발효주가 가장 높게 나타났으며, 항산화성 실험에 나타난 저온 45%의 갈색도의 측정과는 항산화성에서는 좀 다른 결과를 나타낸다. 그러나 항균성이 가장

Keywords

References

  1. Reuben A. 2007. Alcohol and the liver. Curr Opin Gastroenterol 23: 283-291 https://doi.org/10.1097/MOG.0b013e3280f27582
  2. OECD Health Data 2006: Statistics and Indicators for 30 Countries. http://www.oecd.org/document/44/0,3343,en_2649 _34631_2085228_1_1_1_1,00.html (accessed 2th July, 2007)
  3. The Division of National Nutrition Survey. 2002. 2001 National Nutrition Survey Report in Korea. Ministry of Health and Welfare, Seoul
  4. Cargiulo T. 2007. Understanding the health impact of alcohol dependence. Am J Health Syst Pharm 64: S5-11 https://doi.org/10.2146/ajhp060647
  5. Cederbaum AI. 1989. Introduction: Role of lipid peroxidation and oxidative stress in alcohol toxicity. Free Radic Biol Med 7: 537-539 https://doi.org/10.1016/0891-5849(89)90029-4
  6. Bjorneboe GE. 1993. Antioxidant status and alcohol-related disease. Alcohol Alcoholism 28: 111-116 https://doi.org/10.1093/alcalc/28.Supplement_1A.111
  7. Rosenthal J. 1996. Investing in biological diversity. Proceedings of The Cairns conference. Cairns, Australia. OECD
  8. Park JC. 1996. Screening of marine natural products on inhibitory effect of the formation of lipid peroxidation. Korean J Pharmacogen 27: 117-122
  9. Amador ML, Jimeno J, Paz-Ares L, Cortes-Funes H, Hidalgo M. 2003. Progress in the development and acquisition of anticancer agents from marine sources. Annals of Oncology 14: 1607-1615 https://doi.org/10.1093/annonc/mdg443
  10. Garcia-Fernandez LF, Fernando R, Sanchex-Puelles JM. 2002. The marine Pharmacy: New antitumoral compounds from the sea. Pharmaceutical News 9: 495-501
  11. Mayer AMS, Gustafson KR. 2003. Marine pharmacology in 2000: antitumor and cytotoxic compounds. Int J Cancer 105: 291-299 https://doi.org/10.1002/ijc.11080
  12. Ministry of Agriculture and Forestry. 1993. Ministry of Agriculture and Forestry Statistical Yearbook. p 291
  13. Jo YG. 1978. The sterol composition of Styela clava. Kor Fish Soc 11: 97-101
  14. Lee KH, Park CS, Hong BI, Jung BC, Cho HS, Jea YG. 1995. Seasonal variations of nutrients in warty sea squirt (Styela clava). J Korean Soc Food Nutr 24: 268-273
  15. Ahn SH. 2003. Extraction of glycosaminoglycans from Styela clava tunic. Biotechnol Bioproc Eng 18: 180-185
  16. Lehrer RI. 2001. Clavanins and styelins, alpha-helical antimicrobial peptides from the hemocytes of Styela clava. Adv Exp Med Biol 484: 71-76 https://doi.org/10.1007/978-1-4615-1291-2_7
  17. Menzel LP, Lee IH, Sjostrand B, Lehrer RI. 2002. Immunolocalization of clavanins in Styela clava hemocytes. Dev Comp Immunol 26: 505-515 https://doi.org/10.1016/S0145-305X(02)00010-1
  18. Lee IH, Zhao C, Nguyen T, Menzel, Waring AJ, Sherman MA, Lehrer RI. 2001. Clavaspirin, an antibacterial and haemolytic peptide from Styela clava. J Pept Res 58: 445-456 https://doi.org/10.1034/j.1399-3011.2001.10975.x
  19. Taylor SW, Craig AG, Fischer WH, Park M, Lehrer RI. 2000. Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes. J Biol Chem 275: 38417-38426 https://doi.org/10.1074/jbc.M006762200
  20. Park SM, Seo HK, Lee SC. 2006. Preparation and quality properties of fish paste containing Styela plicata. J Korean Soc Food Sci Nutr 35: 1256-1259 https://doi.org/10.3746/jkfn.2006.35.9.1256
  21. Cavalcante MCM, Allodi S, Valente AP, Strausi AH, Takahashi HK, Mourão PAS, Pavão MSG. 2000. Occurrence of heparin in the invertebrate Styela plicata (Tunicata) is restricted to cell layers facing the outside environment. J Biol Chem 275: 36189-36196 https://doi.org/10.1074/jbc.M005830200
  22. Pavao MSG, Aiello KRM, Werneck CC, Silva LCF, Valente AP, Mulloy B, Colwelli NS, Tollefseni DM, Mourao PAS. 1998. Highly sulfated dermatan sulfates from ascidians. J Biol Chem 273: 27848-27857 https://doi.org/10.1074/jbc.273.43.27848
  23. Tincu JA, Menzel LP, Azimov R, Sands J, Hong T, Waring AJ, Taylor SW, Lehrer RI. 2003. Plicatamide an antimicrobial octapeptide from Styela plicata hemocytes. J Biol Chem 278: 13546-13553 https://doi.org/10.1074/jbc.M211332200
  24. Raftos DA, Hutchinson A. 1995. Cytotoxicity reactions in the solitary tunicate Styela plicata. Dev Comp Immunol 19: 463-471 https://doi.org/10.1016/0145-305X(95)00028-R
  25. Kim JJ, Kim SJ, Kim SH, Park HR, Lee SC. 2005. Antioxidant and anticancer activities of extracts from Styela plicata. J Korean Soc Food Sci Nutr 34: 937-941 https://doi.org/10.3746/jkfn.2005.34.7.937
  26. Seo BY, Jung ES, Park HR, Lee SC, Park E. 2006. Effect of aceton extract from Styela clava on oxidative DNA damage and anticancer activity. J Korean Soc Appl Biol Chem 49: 227-232
  27. Jung ES, JY Kim, Park E, Park HR, Lee SC. 2006. Cytotoxic effect of extracts from Styela clava against human cancer cell lines. J Korea Soc Food Sce Nutr 35: 823-827 https://doi.org/10.3746/jkfn.2006.35.7.823
  28. AOAC. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington DC
  29. Reeves PG, Nielsen FH, Fahey GC. 1993. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123: 1939-1951 https://doi.org/10.1093/jn/123.11.1939
  30. Liu SJ, Ramsey RK, Fallon HJ. 1975. Effects of ethanol on hepatic microsomal drug metabolizing enzymes in the rat. Biochem Pharmacol 24: 36-378 https://doi.org/10.1016/0006-2952(75)90220-8
  31. Hu ML, Chuang CH, Sio HM, Yeh SL. 2002. Simple cryoprotection and cell dissociation techniques for application of the comet assay to fresh and frozen rat tissues. Free Radic Res 36: 203-209 https://doi.org/10.1080/10715760290006420
  32. Friedebald WT, Levy RI, Fedreison DS. 1979. Estimation of concentration of low density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499-508
  33. Singh PN, McCoy MT, Tice RR, Schneider EL. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175: 184-191 https://doi.org/10.1016/0014-4827(88)90265-0
  34. Woollett LA, Baldner-Shank GL, Aprahamian S, Engen RL, Beitz DC. 1987. Adaptation of lipogenesis and lipolysis to dietary ethanol. Alcohol Clin Exp Res 11: 336-339 https://doi.org/10.1111/j.1530-0277.1987.tb01321.x
  35. Savolainen MJ, Baraona E, Leo MA, Lieber CS. 1986. Pathogenesis of the hypertriglyceridemia at early stages of alcoholic liver injury in the baboon. J Lipid Res 27: 1073-1083
  36. Kawasaki M. 2004. Effects of dietary sea squirt (Halocynthia roretzi) on lipid metabolism in rats. Biofactors 22: 169-172 https://doi.org/10.1002/biof.5520220134
  37. Yook HS, Kim JO, Choi JM, Kim DH, Cho SK, Byun MW. 2003. Changes of nutritional characteristics and serum cholesterol in rats by the intake of dietary fiber isolated from ascidian (Halocynthia roretzi) tunic. J Korean Soc Food Sci Nutr 32: 474-478 https://doi.org/10.3746/jkfn.2003.32.3.474
  38. Ozdil S, Bolkent S, Yanardag R, Arda-Pirincci P. 2004. Protective effects of ascorbic acid, dl-alpha-tocopherol acetate, and sodium selenate on ethanol-induced liver damage of rats. Biol Trace Elem Res 97: 149-162 https://doi.org/10.1385/BTER:97:2:149
  39. Bishayee A, Sarkar A, Chatterjee M. 1995. Hepatoprotective activity of carrot (Daucus carota L.) against carbon tetrachloride intoxication in mouse liver. J Ethnopharmacol 47: 69-74 https://doi.org/10.1016/0378-8741(95)01254-B
  40. Celia M, Wilkinson W. 1989. Lever function - a review. Aust Vet J 49: 163-169
  41. Nerbelt WT. 1982. Fundamentals of Clinical hemistry. W.B. Saunders Company, Philadelphia, USA. p 163-169
  42. Tanaka K, Lizuka Y. 1968. Suppression of enzyme release from isolated rat liver lysosomes by non-steroidal antiinflammatory drugs. Biochem Pharmacol 17: 2023-2032 https://doi.org/10.1016/0006-2952(68)90175-5
  43. Yemitan OK, Izegbu MC. 2006. Protective effects of Zingiber officinale (Zingiberaceae) against carbon tetrachloride and acetaminophen-induced hepatotoxicity in rats. Phytotherapy Research 20: 997-1002 https://doi.org/10.1002/ptr.1957
  44. Lieber CS, Leo MA. 1992. Alcohol and liver. In Medical and nutritional complications of alcoholims; mechanism and management. Lieber CS, ed. Plenum Medical Book Co., New York. p 185
  45. Lieber CS. 1991. Alcohol induced hepatotoxicity. In Hepatotoxicology. Meeks RG, Harrison SD, Bull RJ, eds. CRC Press Inc., New York, USA. p 481-523
  46. Fridovich I. 1989. Oxygen radicals from acetaldehyde. Free Radic Biol Med 7: 557-558 https://doi.org/10.1016/0891-5849(89)90032-4
  47. Navasumrit P, Ward TH, Dodd NJ, O'Connor PJ. 2000. Ethanol-induced free radicals and hepatic DNA strand breaks are prevented in vivo by antioxidants: effects of acute and chronic ethanol exposure. Carcinogenesis 21: 93-99 https://doi.org/10.1093/carcin/21.1.93
  48. Singh NP, Lai H, Khan A. 1995. Ethanol-induced single strand DNA breaks in rat brain cells. Mutat Res 345: 191-196 https://doi.org/10.1016/0165-1218(95)90054-3
  49. Rajasinghe H, Jayatilleke E, Shaw S. 1990. DNA cleavage during ethanol metabolism: role of superoxide radicals and catalytic iron. Life Sci 47: 807-814 https://doi.org/10.1016/0024-3205(90)90553-4
  50. Fedeli D, Falcioni G, Olek RA, Massi M, Cifani C, Polidori C, Gabbianelli R. 2007. Protective effect of ethyl pyruvate on msP rat leukocytes damaged by alcohol intake. J Appl Toxicol 9; [Epub ahead of print]
  51. Kim H, Oh E, Im H, Mun J, Yang M, Khim JY, Lee E, Lim SH, Kong MH, Lee M, Sul D. 2006. Oxidative damages in the DNA, lipids, and proteins of rats exposed to isofluranes and alcohols. Toxicology 220: 169-178 https://doi.org/10.1016/j.tox.2005.12.010
  52. Ha BS, Baek SH, Kim SY. 2000. Carotenoids components of tunicata, shellfishes and its inhibitory effects on mutagenicity and growth of tumor cell. J Korean Soc Food Sci Nutr 29: 922-934

Cited by

  1. Anti-inflammatory effect of enzymatic hydrolysates fromStyela clavaflesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages andin vivozebrafish model vol.9, pp.3, 2015, https://doi.org/10.4162/nrp.2015.9.3.219
  2. Antioxidant and ACE Inhibitory Activities of Styela clava according to Harvesting Time vol.39, pp.3, 2010, https://doi.org/10.3746/jkfn.2010.39.3.331
  3. Antioxidant and Antihypertensive Activities of Styela plicata according to Harvesting Time and Size vol.40, pp.3, 2011, https://doi.org/10.3746/jkfn.2011.40.3.350
  4. Effect of angiotensin I-converting enzyme (ACE) inhibitory peptide purified from enzymatic hydrolysates of Styela plicata vol.233, pp.6, 2011, https://doi.org/10.1007/s00217-011-1585-7
  5. Qualities of Konjac Containing Tunic Extract from Styela clava vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.410